
CSCI 1312 September 28, 2016

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Quiz 3 moved to next Wednesday.

• Quiz 2 solution online. Sorry about the mixup with the name of the function in
the second problem (barfoo in the code, foo in the text).

• When I ask you in a quiz or exam question what a function seems intended to
accomplish, I’m looking not for a description in English of what the code is
doing but what the purpose seems to be, as in the minute essay question
from Friday and the extra-credit quiz question. Clearer?

Slide 2

More Administrivia

• I ask you to turn in programs by e-mail. Relatively easy if logged in from
console of a classroom/lab machine. If not?

• Another way is the “mail files” script on the “sample programs” page.

CSCI 1312 September 28, 2016

Slide 3

Programming Tip

• If you’re testing multiple conditions, only one of which is meant to be true,
probably best to do so with a chain of

if else if else if else

rather than a lot of ifs.

• In such a chain, notice what you already know when you get to an else.
Example — I say there’s something redundant in the following code:

if (a < b) { }
else if (a >= b) { }

(Spot it?)

Slide 4

Repetition Via Loops

• Recursion provides one way to repeat something. Often not efficient (every
call to a function requires space for local variables, and at some point you can
run out of room), nor is it always convenient (writing a function every time you
want to repeat something).

• Hence C, like most procedural languages, offers constructs called loops. All
have four basic elements (sometimes implicit).

CSCI 1312 September 28, 2016

Slide 5

Loop Elements

• Initializer — something that sets initial values for variables involved in the
repetition (iteration).

• Condition — something that determines whether repetition continues. Can be
tested at the start of each iteration (pre-test loop) or at the end (post-test
loop).

• Body — the code to repeat.

• Iterator — something that moves on to the next iteration.

Slide 6

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and
iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */
while (n <= 10) { /* condition */

printf("%d\n", n); /* body */
n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

CSCI 1312 September 28, 2016

Slide 7

for Loops

• Probably the most common type of loop. Particularly useful for anything
involving counting, but can be more general. Syntax has explicit places for
initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

int n;
for (n = 1; n <= 10; ++n) {

printf("%d\n", n);
}

• Initializer happens once (at start); condition is evaluated at the start of each
iteration; iterator is executed at the end of each iteration.

Slide 8

do while Loops

• Very similar to while loop, except that test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */
do {

printf("%d\n", n); /* body */
n = n + 1; /* iterator */

} while (n <= 10); /* condition */

CSCI 1312 September 28, 2016

Slide 9

Loops — Simple Examples

• We could do loop versions of the factorial and Fibonacci programs, as
examples of using for loops.

• We could do a loop version of the program to sum integers from stdin, as an
example of using a while loop.

• Notice that we could even have a loop within a loop (“nested loops”). Silly
example — printing a rectangle of x’s.

Slide 10

Minute Essay

• Anything noteworthy about Homework 4?

• Any thoughts about interesting or useful problems that would involve
repetition (via loops or recursion)?

