
CSCI 1312 October 7, 2016

Slide 1

Administrivia

• Reminder: Homework 5 due today.

• In quizzes and exams, be aware of what you’re being asked to do — “write a

complete program” will probably involve some input/output, but “write a

function” may not.

Slide 2

More Administrivia

• As mentioned in mail, apparently there’s some confusion about computer use

for quizzes (and exams):

It’s okay to do whatever you need to do to look at the course Web site and

your notes and graded work, but that’s all — in particular, using the compiler

to find out what a piece of C code does or to write programs is NOT allowed.

• (I think I did say this before the first quiz but I guess many didn’t remember?)

(What would be the point of asking “what does this code do?” if you could

type it in and try it?)

CSCI 1312 October 7, 2016

Slide 3

Files and C — Review

• Why files? You probably already know: Things stored in memory vanish when

you turn the computer off; to preserve them, usually save them as files.

• We know one way for a C program to get its input from a file, or write its

output to a file — I/O (input/output) redirection. But this makes it difficult to get

input from more than one source, or save output in more than one place.

• So C (like many other programming languages) provides ways to work more

generally with files.

Slide 4

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

Unix doesn’t make a distinction, but other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

CSCI 1312 October 7, 2016

Slide 5

Streams in C

• In C, streams are represented by the type FILE *. FILE is something

defined in stdio.h. (As usual, the * means pointer — discussed a bit

already, more later.)

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams — next slide.

Slide 6

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

CSCI 1312 October 7, 2016

Slide 7

Working With Streams in C

• To read from an input stream — fscanf or fgetc, almost identical to

scanf and getchar. To write to an output stream — fprintf or

fputc, almost identical to printf and putchar.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

Slide 8

Another Way to Get Input — Command-Line Arguments

• (We can’t completely discuss this until a bit later, but it’s so useful for working

with files that we’ll do just a bit now.)

• You may have observed that most of the commands you use don’t prompt you

for input, but instead decide what to do based on what you type on the

command line after the command name? so the program must be getting that

information somehow, but — how? “command-line arguments” (e.g., for the

command gcc -Wall hello.c there are two command-line

arguments).

(And those commands? Many of them are C programs!)

• Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method.

CSCI 1312 October 7, 2016

Slide 9

Command-Line Arguments in C

• In C, command-line arguments are passed to main as an array of text strings

(we’ll talk later about arrays and text strings). So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(“Plus one”? yes, one of the arguments is something system-dependent,

often the path for the program’s executable.)

• Reference individual arguments via argv[0], argv[1], argv[2], etc.

• This turns out to be (I think!) a good way to pass text such as filenames to

your program.

Slide 10

Files — Examples

• (Example of character-oriented I/O with files.)

• (Example of formatted I/O with files.)

CSCI 1312 October 7, 2016

Slide 11

Minute Essay

• Can you think of situations in which being able to use files (other than via I/O

redirection) could be useful?

