Administrivia

- Reminder: Homework 6 due today. When you turn in homework, please try to remember to put in the subject line which course it's for. Sometimes it doesn't matter much, but for two courses I teach there's a Homework 6 due today!
- Next homework to be assigned Friday, due a week later.

Slide 1

Minute Essay From Last Lecture

- One person asked about how/when I use arrays in my programs. My first thought was "all the time!" but ...
- Arrays are a simple kind of "collection" but there are others, and the others are apt to be better if you don't need to work with large numbers of elements

Slide 2

 but also don't know ahead of time how many. If you do know, and you need efficiency, arrays work well.- Matrices are an obvious use, but if they're "sparse" (lots of entries zero) it may be more space-efficient to represent them another way.
- Another application area I know a little about indirectly is "molecular dynamics", which involves simulating large numbers of atoms, storing for each atom mass, position, velocity, etc.

Sorting — Recap/Review

- Problem: Given an array (or list) of elements for which there is a sensible "less than" operator, put them in order.
- Simple solutions include bubble sort, selection sort, insertion sort. Easy to program but not "fast" (more shortly). Textbook discusses these pretty well.

Slide 3

- (Examples at board of bubble sort and selection sort.)
- More-complex but "faster" algorithms exist and (at least conceptually) use recursion (!).

Searching - The Problem and Some Solutions

- Problem: Given an array (or list) and an element, search the array for the element.
- Simplest solution is sequential search. Easy to program and works for any array but not "fast".

Slide 4

- Slightly more-complex solution is binary search. "Faster" but requires array to be in order.
- Textbook has good discussions. (Also example(s) at board?)

Order of Magnitude of Algorithms

- Conventional wisdom (among computer scientists) is to write programs in a way that humans can understand, and let the compiler turn them into something that will run fast.
- One exception is "order of magnitude" of algorithm, however.

Slide 5

- Key idea is to think about how execution time (or some other measure, such as memory requirements) scales with "problem size".
- Roughly analogous to order of magnitude of numbers - provide a way of grouping into classes in which all members of one class are sort of "the same" but members of different classes are not.
- Typically written using "big-O" notation (e.g., $O(N), O\left(N^{2}\right)$, etc.). Formal definition possible, but informally, $O(f(N))$ means that execution time (or whatever) for problem size N scales as $f(N)$.

Order of Magnitude of Algorithms, Continued

- A key idea - for large enough problem sizes, algorithms with smaller orders of magnitude are faster, though this may not be true for small problem sizes.
- Another key idea - some orders of magnitude (e.g., $O\left(2^{N}\right)$) are sufficiently "big" that solving problems of any non-trivial size is simply not feasible, so
Slide 6 "wait until computers get faster" is probably not a good strategy. "Hm!"?
- Can help rule out algorithms that would not be practical/feasible for large problems.
A famous(?) example - "traveling salesperson problem", for which all known algorithms require considering, for N cities, all possible permutations, making them $O(N!)$. Not reasonable! (Worth noting that there apparently are practical approximations. Still!)

Sidebar: gnuplot

- A tool I like for both quick interactive plots and nice-looking ones to use in papers is gnuplot. Available on most UNIX-like systems and (I think!) optionally for other operating systems. Home page at gnuplot.sourceforce. net. Can do 2D and 3D plots, the former

Slide 7

 with Cartesian or polar coordinates.- To start it, gnuplot. Brings up a command-line interface. Online help available with help. More next time, but for now we could plot some simple polynomial functions and observe how much faster ones with an x^{2} grow than linear functions, and how ones with an x^{3} grow even faster, and so forth.

Order of Magnitude of Algorithms, Continued

- As an example, look at bubble sort and selection sort.
- For both, "problem size" is the number of elemnents to sort, and a rough measure of how execution time scales with problem size is based on how many comparisons are needed, in the worst case.

Slide $8 \quad$ - Again for both, total number of comparisons is $N(N-1) / 2$, making them " $O\left(N^{2}\right)$ ".

- As another example, look at sequential search and binary search. The first is $O(N)$, but the second is \ldots What? $(O(\log N))$

