
CSCI 1312 October 28, 2016

Slide 1

Administrivia

• Homework 7 on the Web. Due next Friday. (I hope at least one of the

problems will seem interesting to you.)

• Scores on Quiz 4 were mostly disappointing (to me too).

Slide 2

Character Strings in C — Preview

• We’ll talk more about text data soon, but for now a summary version:

• Text strings are represented as arrays of characters. Can vary in length; end

of string indicated by a special character.

• Text in double quotes (e.g., in a call to printf) defines a string constant —

so somewhere in memory there is an array of those characters.

• As we’ll also discuss more soon, arrays and pointers in C are almost

interchangeable, so a function that takes an array as a parameter can specify

it as either an array or a pointer. (Look again now at the definition of

printf and the type of its first parameter.)

CSCI 1312 October 28, 2016

Slide 3

Command-Line Arguments — Review

• You may have observed that most of the commands you use don’t prompt you

for input, but instead decide what to do based on what you type on the

command line after the command name? so the program must be getting that

information somehow, but — how? “command-line arguments” (e.g., for the

command gcc -Wall hello.c there are two command-line

arguments).

(And those commands? Many of them are C programs!)

• Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method.

Slide 4

Command-Line Arguments in C

• In C, command-line arguments are passed to main as an array of text

strings. So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(“Plus one”? yes, the argument indexed 0 is something system-dependent,

often the path for the program’s executable.)

• Reference individual arguments via argv[0], argv[1], argv[2], etc.

• This turns out to be (I think!) a good way to pass text such as filenames to

your program.

CSCI 1312 October 28, 2016

Slide 5

Files and C — Review

• Why files? You probably already know: Things stored in memory vanish when

you turn the computer off; to preserve them, usually save them as files.

• We know one way for a C program to get its input from a file, or write its

output to a file — I/O (input/output) redirection. But this makes it difficult to get

input from more than one source, or save output in more than one place.

• So C (like many other programming languages) provides ways to work more

generally with files. File I/O is based on the idea of “streams” (of characters or

bytes).

Slide 6

Streams in C

• In C, streams are represented by the type FILE *. FILE is something

defined in stdio.h. (As usual, the * means pointer — discussed a bit

already, more later.)

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams — next slide.

CSCI 1312 October 28, 2016

Slide 7

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters specify filename and whether to open for reading or writing.

Slide 8

Working With Streams in C

• To read from an input stream — fscanf or fgetc, almost identical to

scanf and getchar. To write to an output stream — fprintf or

fputc, almost identical to printf and putchar.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

CSCI 1312 October 28, 2016

Slide 9

Files — Review Examples

• (Example of character-oriented I/O with files.)

• (Example of formatted I/O with files.)

Slide 10

gnuplot — Review

• A tool I like for both quick interactive plots and nice-looking ones to use in

papers is gnuplot.

• To start it, gnuplot. Brings up a command-line interface. Online help

available with help.

CSCI 1312 October 28, 2016

Slide 11

gnuplot, Continued

• Useful commands include plot to plot function(s) or data from file(s), set

to set various things (e.g., x and y ranges).

• Default output to terminal, but with set terminal and set output

you can instead store to a file in various formats.

• Can also put commands (plot etc.) in a file and execute batch-style, or with

load. Useful if you want to regerate plots when data changes.

• (Examples.)

Slide 12

Minute Essay

• What are some kinds of plots you can imagine yourself wanting to make?

• If you had trouble with the first problem on the quiz, how did you approach it?

did you try “tracing through” the code, writing down values of variables and

updating them?

