
CSCI 1312 October 31, 2016

Slide 1

Administrivia

• Next quiz a week from today. Likely topic is files.

Slide 2

Minute Essay From Last Lecture

• About graphing/plotting things, many replies — most people found it useful to

be able to make plots. We might do more examples later.

CSCI 1312 October 31, 2016

Slide 3

Pointers Revisited

• Every time you call scanf, you pass it at least one parameter of the form

&x. What does that mean? Also, when you look at man pages for some

functions, they show function declarations with parameters of the form type *.

What does that mean?

• To explain, we need one more kind of variable — pointers. A pointer, as its

name suggests, points to something — namely, a location in memory.

Typically a pointer “points to” a variable.

Slide 4

Pointers in C

• Many programming languages provide something like pointers. Unlike some

more-recent languages, C allows you to have both pointer variables and

non-pointer variables.

• To a first approximation, C pointers are just memory addresses — i.e.,

numbers — but they are declared to point to variables (or data) of a particular

type. Example:

int * pointer to int;

double * pointer to double;

• Can display value of pointer using printf with %p. Sometimes interesting

in exploring how variables are laid out in memory

(implementation-dependent).

CSCI 1312 October 31, 2016

Slide 5

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• Special value NULL means the pointer “doesn’t point to anything”.

Dereferencing a null pointer usually produces an error, as does deferencing

an uninitialized pointer variable.

Slide 6

Pass By Reference, Sort Of — Review(?)

• Functions can only explicitly return a single value — a significant limitation.

Pointers provide a way to get around that: By passing a pointer to something,

rather than the thing itself, can in effect have a function return multiple things.

• To make this work, declare the function’s parameters as pointers, and pass

addresses of variables rather than variables. (This is how scanf does what

it does, and why you need the &.)

• (The “sort of” in the slide title is because this is not true pass by reference as

in, e.g., C++, but the effect is the same.)

• (We did an example of this a while back — sample program

simple-function-with-ptrs.c.)

CSCI 1312 October 31, 2016

Slide 7

Pointers and Arrays in C

• C treats pointers and arrays as interchangeable in most respects. (This is why

it works that many functions whose parameters are supposed to be strings —

arrays of characters — declare them as pointers. Many many examples . . .)

• About the only difference is behavior of sizeof operator — for

locally-declared array you get size in bytes, for array parameter or pointer you

get pointer size.

Slide 8

Pointer Arithmetic in C

• C also permits doing some arithmetic operations on pointers, though only the

ones that are “sensible”.

• Adding an integer n to a pointer that points to type advances it n times the

size of type. Subtracting an integer from a pointer works similarly. (Strictly

speaking, though, you should only do this within an array.)

• Subtracting one pointer from another gives an integer result. (This can be

particularly useful in working with strings.)

• Comparing pointers with relational operators works, though strictly speaking

you should probably only use less-than and greater-than operators on

pointers into the same array.

• (Example.)

CSCI 1312 October 31, 2016

Slide 9

Pointer Arithmetic in C, Continued

• Example: If a is an array of ints, a[2] and *(a+2) are equivalent.

• So we could write loops over arrays using pointers. Once upon a time that

was sometimes more efficient. With current compilers, probably not so, so

use whatever is most readable.

Slide 10

Minute Essay

• Anything noteworthy about Homework 6 (about arrays — random numbers

into “bins”, memoized recursive Fibonacci)?

