
CSCI 1312 November 2, 2016

Slide 1

Administrivia

• Reminder: Homework 7 due Friday.

• Readings updated (as mentioned in e-mail).

• Sample solution posted for Homework 6 (of course, don’t peek if you’re still

working on the problems).

Slide 2

Minute Essay From Last Lecture

• Many people had trouble with Homework 6. I do mean for assignments to be

somewhat challenging, but I don’t mean for them not to be doable with a bit of

effort.

• At least one person mentioned how much difference memoization made to

the recursive Fibonacci function. One of my original motivations for assigning

this problem was to have an incentive to try it myself!



CSCI 1312 November 2, 2016

Slide 3

Homework 7

• For the first problem, do try to process input a character at a time. (It’s kind of

a more interesting logic puzzle that way anyway.)

• For the second problem, you may have to try various inputs to get ones that

produce interesting-to-display results.

• Be advised that ACM tutors may or may not know about gnuplot, though I

think with what’s in the homework writeup and the example input file you

should be okay — but if not, ask me, perhaps by e-mail.

Slide 4

Just For Fun — ASCII Art Revisited

• I mentioned an all-ASCII-art animation of the first Star Wars movie?

apparently still available, via

telnet towel.blinkenlights.nl

(to interrupt control-] then control-d).

• (What some people choose to do with their time can be — interesting?)



CSCI 1312 November 2, 2016

Slide 5

Text Data — Single Characters

• char is considered an integer type and can be worked with as such. Notice

that while these days ASCII is by far the most common encoding, standard

doesn’t require that, and there are other possibilities.

• Many library functions for working with single characters (e.g., isalpha).

• Character literals represented using single quotes.

• Can read in / print single characters with scanf or printf using %c. Or

can use getchar, putchar. Notice that getchar returns an int.

Why? so it can return special value EOF when no more input.

Slide 6

Text Data — Strings

• Most more-recent languages have nice ways of working with “strings” of text

data that hide details and provide nice functionality.

• C, in contrast, provides a bare-bones version, in which text strings are

represented as arrays of char, with an end-of-string character (’\0’) that

allows an array of fixed size to store strings of different sizes.

Simple but subject to all the perils of arrays!

• String literals represented using double quotes. Can include “escape”

characters (e.g., ’\n’.)



CSCI 1312 November 2, 2016

Slide 7

Text Strings — Output

• Can use printf with %s.

• Can also use puts (which adds a newline).

Slide 8

Text Strings — Input

• Surprisingly (or not, given C’s minimalist implementation of arrays), no nice

way to do this!

• Can use scanf, but no nice/general way to be sure you don’t overflow array,

and getting something that includes whitespace may be tricky.

• Can get a whole line with fgets, but must provide a fixed-size array (so,

what size?) and deal with newlines.

• gets looks useful but observe what its man page says(!).

• Consider processing data character by character, or using command-line

arguments.



CSCI 1312 November 2, 2016

Slide 9

Working With Text Strings in C

• Once you have some “strings” in your program, what can you do with them?

• You can work on them as arrays of character (that’s what they are) or using

pointers (as in the example last time with an array of ints).

• Perhaps surprisingly, normal(?) assignment and relational operators don’t for

the most part work, but there are library functions (next slide).

Slide 10

Working With Text Strings in C, Continued

• Many library functions useful for working with strings, among them strcmp

to use instead of relational operators.

• Significant problem in working with strings — no natural maximum size, so

must decide how big to make the array of characters used to hold one — and

then be sure you don’t try to put in too many characters.

• Some library functions let you say how big the array is; some don’t. Always be

as careful as you can when working with strings; trying to store a string in an

array not big enough is a source of “buffer overflows”, which can lead to

program crashes and more subtle problems, including security risks.



CSCI 1312 November 2, 2016

Slide 11

Working With Text Strings in C, Continued

• Many library functions for working with strings use/return pointers. Pointer

arithmetic allows for some interesting uses of these functions.

• (Examples as time permits.)

Slide 12

Minute Essay

• None really — sign in (unless questions?).


