
CSCI 1312 November 4, 2016

Slide 1

Administrivia

• Reminder: Homework 7 was due today; deadline extended to Monday. Please

do remember that on the second problem I want more than just your code.

• Next homework to be assigned Monday.

• Quiz 5 moved to next Friday. Topics TBA Monday, but will likely be files or

strings or both.

Slide 2

Strings in C — Recap/Review

• Strings in C are arrays of char, delimited by special character ’\0’.

• Print with printf and %s or puts; read with fgets or (carefully!)

scanf.

• Library functions for comparing, copying, etc.

• (Finish palindrome example.)



CSCI 1312 November 4, 2016

Slide 3

Converting Text Strings to Numeric Types

• You know about scanf (and fscanf) for converting text input to numeric

types. But what if you have a text string (e.g., a command-line argument) and

want to extract from it a command-line argument? You could use sscanf,

or . . .

• Functions strtol and strtod can help. (atoi and atof can also be

used but do not provide any kind of error checking.)

Usage example (to convert the first command-line argument, if the second

parameter to main is argv):

char *endptr;

long n = strtol(argv[1], &endptr, 10);

if (*endptr != ’\0’) /* error */

• (Example — program to convert command-line arguments to integers and

sum.)

Slide 4

Dynamic Memory and C

• With the old C standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays help with that, but don’t solve all related problems:

In most implementations, space is obtained for them on “the stack”, an area of

memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).



CSCI 1312 November 4, 2016

Slide 5

Dynamic Memory and C

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(How this helps — most implementations differentiate between two areas of

memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• Dynamic memory allocation also needed to build “ragged” arrays (arrays in

which rows are of different sizes) and “linked” data structures (later).

Slide 6

Dynamic Memory and C, Continued

• To request memory, use malloc.

• To return it to the system, use free. (For short simple programs you can

probably get away with skipping free since the operating system will

probably clean up after you, but for longer and more complicated programs,

you should clean up when you can, or eventually you may run out of memory.)



CSCI 1312 November 4, 2016

Slide 7

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *

20);

or better:

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

and then

free(nums);

free(some text);

• Book recommends “casting” value returned by malloc. Other references

recommend the opposite! But you should check the value — if NULL, system

Slide 8

was not able to get that much memory.

• Example — program to generate N “random” numbers and sort them.



CSCI 1312 November 4, 2016

Slide 9

Minute Essay

• Anything noteworthy about Homework 7?


