
CSCI 1312 November 7, 2016

Slide 1

Administrivia

• Reminder: Homework 7 due today.

• Homework 8 on the Web; due in a week.

Slide 2

User-written “Library” Code

• You know about calling functions in the C standard library (e.g., printf) in

your code. One advantage of having a library is that this code only has to be

written once, and then every program can use it.

• If you write more-complex programs, it may make sense to write your own

“library” of functions to be called from more than one program, putting them in

a separate source file. (Homework 8 is an example — a few functions that

make up a “library” for alphabetic characters, and two programs that use

these functions.)



CSCI 1312 November 7, 2016

Slide 3

User-written “Library” Code, Continued

• How to “package” these library functions — at least two possibilities.

• One is to put them in a .c file and use #include to include it in every

program that uses the functions.

• Another way (which is pretty much how the standard library functions are

packaged) is to have a .h file containing declarations and a companion .c

file with definitions. You then #include the .h file in programs that use

the functions, and use “separate compilation” . . .

Slide 4

Building Large Programs — Separate Compilation

• For large programs it’s often better to split up code into more than one source

file — for readability if nothing else.

• How then to make the executable? A good way is to compile each .c file

separately (with gcc -c) and then use gcc to “link” the resulting .o

(“object code”) files to produce the executable. (Note too that while gcc

names the executable a.out by default, it will call it something else if you

say to.)

• Sounds complicated? well, not as simple as compiling a single .c file, but . . .



CSCI 1312 November 7, 2016

Slide 5

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

Slide 6

Makefiles

• First step in using make is to set up “makefile” with “rules” describing how

files that make up your program (source, object, executable, etc.) depend on

each other and how to update the ones that are generated from others.

Normally call this file Makefile or makefile.

(Example: Homework 8.)

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.



CSCI 1312 November 7, 2016

Slide 7

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

Slide 8

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.



CSCI 1312 November 7, 2016

Slide 9

“Phony” Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.

Slide 10

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• (See example again.)



CSCI 1312 November 7, 2016

Slide 11

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

Slide 12

Minute Essay

• Anything else to say about Homework 7 now that you’re (I hope!) closer to

finishing it?

• Questions about today’s material?


