
CSCI 1312 November 18, 2016

Slide 1

Administrivia

• Reminder: Homework 8 due Monday. How many more . . . One more

comparable to recent ones, or two short ones.

• Quiz 6 (last one!) scheduled for Wednesday after holiday.

Slide 2

Minute Essay From Last Lecture

• Most people’s responses — I think for many, structs are new enough that

what you might use them for isn’t clear yet, or not clear enough to express

easily!

• (I would say that mostly what they give you is a way to express some things in

a way that’s easier to understand, though “opaque types” do provide

something I’m not sure how you could easily get otherwise . . . )



CSCI 1312 November 18, 2016

Slide 3

User-Defined Types and Library Code, Revisited

• Library code often makes use of “opaque” types (e.g., FILE).

• One useful thing about this — libraries can be written in terms of these types

and implemented differently on different systems, with application

programmers not needing to know how implemented. (E.g., a FILE could be

a struct containing who knows what, or an index into an O/S-built table,

or . . . )

Slide 4

Bitwise Operators

• In what we’ve done so far, we’ve dealt with most data without needing to know

exactly how it’s represented in terms of 0s and 1s (though knowing a little

about that helps you understand limitations and pitfalls).

• However, for various reasons it can be useful or even necessary to work with

individual bits — e.g., working with image data (where a “pixel” is represented

by some collection of n-bit fields), or working at a very low level with I/O

devices. Some system-specific functions callable from C also take as

parameters integers that are the result of combining bits.

• So C, like many programming languages, provides operators to allow that . . .



CSCI 1312 November 18, 2016

Slide 5

Bitwise Operators and C

• Bitwise “and” (both bits): &

• Bitwise “or” (either bit): |

• Bitwise “exclusive or” (either bit, not both): ˆ

• Bitwise negation/complement (unary operator, flips bits): ˜

• Left and right shifts (specify how many bits): <<, >>).

• All work on integer types.

Slide 6

Bitwise Operators and C, Continued

• In many programming languages, sizes of integer types are fixed, which can

make it easier to do this kind of thing.

• In C, however . . . (so you need to be a little careful).



CSCI 1312 November 18, 2016

Slide 7

Bitwise Operations

• As an example of using some of these operators and also of using a union,

write a program to show the bits in a long, two ways.

• Trying it, on a 64-bit system and also on a rather old 32-bit system, some

results are surprising.

Slide 8

Bit Manipulation in C

• A typical “use case” for these operators is in working with an integer that’s not

really an integer so much as a collection of bits, each with a meaning (flags

used to communicate with an I/O device, e.g.).

• Typically define “masks” for individual bits or collections of bits, giving them

names (via #define) and then use bitwise operators to set, clear, test.

• As noted, lack of standardized size for most integer types can be a problem,

but C99 introduced some fixed-size integer types (<stdint.h>).

• (Example.)



CSCI 1312 November 18, 2016

Slide 9

Minute Essay

• What is the result of applying bitwise operators as follows:

11102 & 10012 (bitwise and)

11102 | 10012 (bitwise or)

11102 ˆ 10012 (bitwise exclusive or)

˜11102 (bitwise negation)

Slide 10

Minute Essay Answer

• What is the result of applying bitwise operators as follows:

11102 & 10012 is 10002

11102 | 10012 is 11112

11102 ˆ 10012 is 01112

˜11102 is 00012


