
CSCI 1312 December 2, 2016

Slide 1

Administrivia

• As of writing this, it looks like only four people have turned in reasonably

complete versions of Homework 8. I’m willing to accept this assignment

through end of the day Monday, so if you haven’t finished yet, I say don’t give

up.

• Monday and Wednesday I showed code for a recursive implementation of a

sorted linked list. I’ve also written an iterative (loops) version and put it on the

sample programs page, if you’re interested.

Slide 2

More Administrivia

• About grades, remember from the syllabus how I do this — every assignment

(incluing exams and quizzes) has a “perfect score”, and I add those up to give

an overall perfect score, add up your scores, and divide your score by the

perfect score.

• Extra-credit problems still in work, but I will try to post them by Monday. You

can’t lose anything (except time?) working on them — any points you get are

added to your score but don’t affect the perfect-score number.

• Final next Friday. Review sheet to be posted by Monday. A little more when

we do the minute essay.



CSCI 1312 December 2, 2016

Slide 3

“Collections” Types Review/Revisited

• Can think of a “collection type” as a way of representing a collection of data

items. Arrays are one; linked (linear) lists are another.

• There are many others, all beyond what we can cover in this course;

more-advanced courses in programming and computer science are apt to

discuss many or all of these . . .

Slide 4

Sidebar: Abstract Data Types

• In computer science we talk often about “abstract data types”.

• Somewhat formally, an abstract data type is a set of values and some

operations on them.

• Simple example: fixed-size integers, with obvious(?) values and operations

including arithmetic and bit manipulation.

• Simple example: Boolean values, also with obvious values and operations

including logical “and”, logical “or”, etc.

• Less simple example: Linear list, with operations including insert, delete,

traverse, indexed access. Could be implemented with an array or with a

linked-list structure.



CSCI 1312 December 2, 2016

Slide 5

Stacks

• A “stack” is a list of values of a particular type (integers, say, or something

more complicated), with a restricted set of operations, often just “enqueue”

(add to the “tail” of the queue), “pop” (remove and return the top element),

and “is empty?” (I.e, this is a “last-in, first-out” linear list.)

• Turns out to be widely useful. This idea is how functions (including recursive

ones) are typically implemented, with a stack each element of which contain

values passed to the function, local variables, and a “return address”.

• Could be implemented using an array or as linked list.

Slide 6

Queues

• A “queue” is a list of values of a particular type (integers, say, or something

more complicated), with a restricted set of operations, often just “enqueue”

(add to the “tail” of the queue), “dequeue” (remove and return the first

element), and “is empty?” (I.e, this is a “first-in, first-out” linear list.)

• Also widely useful any time you need to maintain something in first-in first-out

order.

• Could be implemented using an array (“circular queue” idea) or as linked list.



CSCI 1312 December 2, 2016

Slide 7

Trees

• A “tree” in computer science is a way of representing data organized in some

hierarchical way. Each is a collection of “nodes” that store a value and

pointers to “child nodes”.

• In the same way as a linked list is represented by a pointer to the first node, a

tree is represented by a pointer to its “root node”.

• Useful any time you want to represent a hierarchical structure (directories and

files, e.g.).

Slide 8

Trees, Continued

• “Binary trees” (in which each node has at most two children) are simpler to

represent and effective in many situations.

• “Binary search tree” is a binary tree where everything in the “left subtree” of a

node has smaller values and everything in the “right subtree”. Allows faster

lookup, sort of like binary search in an array.

• “Heap” is a binary tree where everything in both subtrees of a node has larger

values. Useful for maintaining a “priority queue” (with operations including

“remove and return smallest element” and “insert element”).



CSCI 1312 December 2, 2016

Slide 9

Graphs

• In some mathematical contexts, “graph” means a collection of nodes and

edges connecting them. Edges can be uni- or bi-directional. Nodes can store

values, and associated with each edge there can also be a value (a “weight”).

• Also turns out to be widely useful as a way of reprenting all kinds of things —

e.g., the classic traveling-salesperson problem.

• Can implement used a linked data structure or with various types of 2D arrays.

Slide 10

Hash Table

• A “hash table” is a meant-to-be-efficient way of storing (key, value) pairs, such

that looking up a value using the key is reasonably fast.

• Basic idea is to define a reasonably-sized array and some way to map from a

key to an index into this array (“hash function”). Each element of the array

points to a list of (key, value) pairs, and to look for a particular key, you use the

hash function to map into the array and then search the list.

If the hash function and the table size are well-chosen, these lists will be

short, perhaps in many cases of length 1, making lookup fast.

• Also widely useful in the many circumstances in which fast lookup is desirable.

(As an example — in a minute essay recently someone asked about fast

access to items in “a database”? this idea would probably work for that.)



CSCI 1312 December 2, 2016

Slide 11

“Ragged Arrays”

• (This isn’t really an abstract data type, but it’s another kind of collection, so

mention it here.)

• Sometimes useful to be able to define a “ragged array” — an array in which

rows can have different sizes. Not difficult in C, if you represent each row as

an array and have some way of remembering sizes of rows.

• An obvious(?) example is the second argument to main — it’s a ragged

array of characters, with no need to explicitly save how many columns in each

row since strings are null-terminated.

Slide 12

Sorted Linked List Revisited

• (Compare and contrast recursive and iterative version of code. Perhaps

interesting to note that some things seem easier in one version and some in

the other.)



CSCI 1312 December 2, 2016

Slide 13

Minute Essay

• About the final, like the midterm and quizzes it will be open-book etc.

Questions will be similar to those on quizzes and midterm, except that I’m

considering one change:

People seem to have a lot of trouble with the “write some code” questions. I

would be willing to relax the rule about not using computers so you could type

in your answers and try them, but that would mean no questions of the form

“what does this code do?” Would you prefer that I do that (relax the rule), or

not?

• There’s so much we just haven’t been able to cover in this course. Any

questions you’d like me to try to answer Monday? (I have some examples of

full-screen text-mode programs in C that I could show, or one that does

something graphical. Both use “third-party” libraries but interesting??)


