
CSCI 1312 (Introduction to Programming for Engineering), Fall
2017

Homework 10

Credit: 50 points.

1 Reading

Be sure you have read (or at least skimmed) the assigned readings from chapters 7 and 11.

2 Honor Code Statement

Please include with each part of the assignment the Honor Code pledge or just the word “pledged”,
plus one or more of the following about collaboration and help (as many as apply).1 Text in italics
is explanatory or something for you to fill in. For written assignments, it should go right after your
name and the assignment number; for programming assignments, it should go in comments at the
start of your program(s).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

3 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu with each file as an attachment. Please use a subject line that mentions the course
and the assignment (e.g., “csci 1312 hw 10” or “CS1 hw 10”). You can develop your programs on

1Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is
the ACM’s Special Interest Group on CS Education.

1



CSCI 1312 Homework 10 Fall 2017

any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

Yes, this writeup is long. But I think the code you write need not be, and it’s an interesting
problem!

You may have heard claims that E is the most frequently-used character in English text, followed
by T, and so forth. Your mission for this assignment is to write two programs that together will
allow you to find out how true this claim is for selected text (and, okay, to give you practice working
with some course topics):

• The first program analyzes a single file of plain-text, counting occurrences of each alphabetic
character and writing results (characters and counts, but only for characters that occur at
least once) to an output file.

• The second program merges one or more files produced by the first program and writes results
to an output file.

(Why two programs? Mostly pedagogical reasons.) Writing the programs from scratch is nontrivial
(though you could probably do it), so to make it more doable I’m providing starter code that reduces
what you need to do and also gives you some practice with UNIX make, discussed in class. Once
you have an output file produced by the second program, you can use the Linux command

sort -n -r outfilename

to display the results in a way that shows the most-often-used letter first, etc.

To give you some practice working with structs in C, I want you to do this problem using an
array of a structs, with each struct containing a letter and a count of how many times it occurs
in the input(s). Since you need such an array in both programs, as well as code to look up a
particular letter and increment its counter, it would seem to make sense to have a “library” used
by both programs that declares/defines the struct and some needed functions. I’ve written code
that declares the needed struct and declares some functions for building and operating on the
needed array and also starter code for the two programs. Your mission will be to fill in the missing
pieces. There are several ways to combine this “library” code with the two programs, but what I
want you to do is to use the Linux utility make, as discussed in class. Starter code, with FIXME

comments showing where you need to add code:

• alphacounters.h2, declarations of “library” functions with comments saying what they do.

• alphacounters.c3, starter definitions of “library” functions.

• countalpha.c4, starter code for countalpha program.

• mergecounts.c5, starter code for mergecounts program.

2http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/
alphacounters.h

3http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/
alphacounters.c

4http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/countalpha.
c

5http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/
mergecounts.c

2



CSCI 1312 Homework 10 Fall 2017

• Makefile6, “makefile” to build the two programs.

Rather than copying or downloading each of these files separately, you’ll probably find it easier
to download the ZIP file hw10.zip7 and unzip it with unzip hw10.zip. If you prefer to download
individual files, NOTE that you should use your browser’s “download” or “save” function to obtain
the Makefile rather than copying and pasting text. This is because copy-and-paste will likely replace
the tab characters in the file with spaces, with bad consequences (since tabs are semantically
significant in makefiles.)

The Makefile includes instructions for “building” the project. Note that just using gcc with a
single program, as we’ve been doing, won’t work, but once you have all the above files down-
loaded, typing make will produce two executables, countalpha and mergecounts, that you can run
(although they won’t do anything very interesting). You might try that before starting to write
code.

Instructions for specific files you need to change:

1. (5 points) The first file you need to change is alphacounters.c, which provides code
for functions declared in alphacounters.h. (Notice that alphacounters.h also includes
comments describing what these functions do — very important!) There’s only one function
you need to write code for, the one that given a character finds the element of the array for
it and increments its counter, and I’m hoping that the functions I’m providing code for will
give you some hints about how to work with the array. You can check that your code at least
compiles by typing make again.

2. (20 points) The next file you need to change is the code for the first program, the one that
analyzes a single input file and produces an output file. The starter code checks that there
are two command-line arguments (filenames for input and output) and opens the input file.
Add code to do the following:

• Read the input file a character at a time and count, using the function update count

(written in the first step), how many times each alphabetic character occurs (but use
tolower() first to turn any upper-case characters into lower-case). Note that this func-
tion also tells you whether the character is even alphabetic — it returns false if not
— so you don’t need a separate check using isalpha. Note also that to get full credit
for this part you must use this function rather than trying to figure out another way to
update the right counter.

• Count the total number of characters and how many were alphabetic.

• For every alphabetic character that occurs at least once, write to the output file a line
with the character and the count.

• Print the total number of characters and the number of alphabetic characters.

This is probably easiest to understand with examples. If the input file looks like this:

testing 1 2 3 4?

TESTING 4 3 2 1!

6http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/Makefile
7http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/hw10.zip

3



CSCI 1312 Homework 10 Fall 2017

the output file should look like this:

e 2

g 2

i 2

n 2

s 2

t 4

and the program should print this:

alphabet ’abcdefghijklmnopqrstuvwxyz’

14 alphabetic characters, 36 total characters

And if the input file looks like this:

Now is the time for all good persons

to come to the aid of their party!

the output file should look like this:

a 3

c 1

d 2

e 6

f 2

g 1

h 3

i 4

l 2

m 2

n 2

o 9

p 2

r 4

s 3

t 7

w 1

y 1

and the program should print this:

alphabet ’abcdefghijklmnopqrstuvwxyz’

55 alphabetic characters, 72 total characters

3. (20 points) The last file you need to change is the code for the second program, the one
that merges output from repeated executions of the first program. The starter code checks
that there is at least one command-line argument, builds the array of structs, and calls a
function process file for each input filename to process that single file. Add code to do the
following:

4



CSCI 1312 Homework 10 Fall 2017

• Actually do something in process file, in addition to printing the filename — read
the file a line at a time (more below about how to do this) and use this information to
update the array of counters. Print an error message if the file cannot be opened or has
errors (more below). The function should return true if everything was okay, false if
there was an error.

• After all input files have been processed, write to the output file a line for each element
of the array of structs for which the count is nonzero, printing first the count and then
the letter (this is to make it easier to sort the output with the sort command).

About reading lines from the input file, to get some practice with an additional way of reading
text input, I want you to use fgets to get a line at a time and sscanf to then pick out the
character and the count. (Sample program grades.c has an example of using this technique.)
Your program should do something sensible if an input line is too long to fit into the array
you declare to hold it (such as printing an error message and throwing away the rest of the
line). It should also print an error message for any input line that isn’t in the right form
(character, space, integer, end-of-line). The starter code has some additional hints.

Here too this is probably easiest to understand with an example. Given the two output files
shown earlier, the program should combine them to produce an output file containing

3 a

1 c

2 d

8 e

2 f

3 g

3 h

6 i

2 l

2 m

4 n

9 o

2 p

4 r

5 s

11 t

1 w

1 y

and print this:

alphabet ’abcdefghijklmnopqrstuvwxyz’

processing input file sample1-out.txt

processing input file sample2-out.txt

Finally, the program should give an error message for every line of this input file:

hello

x

100

x 1000x

5



CSCI 1312 Homework 10 Fall 2017

4. (5 points) Finally, you should try your programs with some non-trivial input. The Project
Gutenberg web site8 is a good source of freely-available text. I downloaded copies of two
books (one by Jane Austen, one by P.G. Wodehouse) in UTF-8 format, converted to plain-
text, and made another ZIP file hw10-data.zip9 with the results. Run your programs on these
two files and send me your output files (results of running countalpha on each of the input
files, and result of running mergecounts to combine them).

If you find this sort of thing interesting, you could download additional books and try the
program with them. I used the following command to convert from UTF-8 to really-plain-
ASCII-text:

iconv -f UTF-8 -t US-ASCII -c infile.txt >outfile.txt

Or word-processing programs will also export to plain text, though if you try that route you
should probably open the resulting file in vim and make sure it looks like text.

If you do this, send me your additional input files for extra credit.

8http://www.gutenberg.org
9http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2017fall/Homeworks/HW10/Problems/hw10-data.

zip

6


