
CSCI 1312 September 1, 2017

Slide 1

Administrivia

• Code examples from class will show up on the “Sample programs” page

sometime after class, as soon as I can put them there (but sometimes the

next day).

• Do your TigerCards give you access to this room and CSI 388? (They

should.)

Slide 2

Minute Essay From Last Lecture

• Most people thought pace was pretty much okay, though having more of a

chance to practice in class would be good. So — maybe.

• Several people aren’t clear on the roles of various tools. Brief review shortly.

• “What language do I learn after C”? Depends on what kind of programs you

want to write! ask me, or ask someone who’s doing a kind of programming

that appeals to you.

• One person has a developer friend who on hearing we were learning vim

said “good luck with that”. Yeah. People love it or they hate it.



CSCI 1312 September 1, 2017

Slide 3

Programming Basics and C

• Previous lecture describes relationship between what humans write (“source

code”) and what computers execute (“machine language”).

• For C, usual process is that you write source code, and then it must be

transformed not just into machine language, but into a complete “executable

file” (machine language for your code, plus machine language for any library

functions, plus information so operating system can load it into RAM and start

it up). (Detail: This is for “hosted environment”; in some environments in

which C is used, there may be no o/s.)

• So, what happens to your code . . .

Slide 4

Programming Basics and C, Continued

• Your code is first “compiled” into “object code” (machine language).

Then it’s “linked” with any library object code to form “executable file”.

Sometimes (as for examples we’re doing now) both steps happen as a result

of a single command.

• To recap, we’re basically using two tools, vim (to write/edit programs) and

gcc to compile them, and a command-line environment (terminal window) to

run both tools and also programs we write.



CSCI 1312 September 1, 2017

Slide 5

“Hello World” Program Revisited

• Look again at the program we wrote in class previously. Most of it is standard

boilerplate, to be discussed further soon. Single line you should pay attention

to now is the one with printf.

• Goal for today — describe how to extend this to get input from “standard

input” (keyboard by default), do simple computing, write results to “standard

output” (terminal window by default).

Slide 6

Variables in C

• In C as in most/many other programming languages, you need temporary

storage for data — e.g. someplace to save an input value and/or intermediate

results. For this we use variables.

• Again in C as in many others — variables. In C variables must be declared,

each with both a name and a type. Effect of declaring a variable is to reserve

RAM for a value of the specified type and give it a name that can be

referenced. (Similar to Matlab, except for choice of types?) What a name can

look like is somewhat restricted (see textbook).

• Types in C are pretty basic — integers, “floating-point numbers” (for now, real

numbers), and characters. Integer types are represented as fixed-size binary

numbers and include various “sizes”. More about the others later.



CSCI 1312 September 1, 2017

Slide 7

Variables in C

• Variables are given values by assignment statements (using =, which here

means “assign value on right to variable on left” rather than equality as in

math!).

• Okay to change value with repeated assignments.

Slide 8

Expressions in C

• What’s on the right side of an assignment — expression.

• Expressions in C are similar to those in math, with some

differences/extensions, partly due to limited range of symbols and partly due

to how hardware usually works:

* and / for multiplication and division; on integers division produces quotient

only ; to get remainder use %.

• An expression has a value, which is determined by evaluating it. Evaluation

may have side effects — e.g., printf("hello\n") is an expression,

with the side effect of “printing” and a value that often is not used.



CSCI 1312 September 1, 2017

Slide 9

Assignment Statements Revisited

• Simplest programs are often basically a sequence of assignment statements

(plus some “statements” that are really just expressions, such as that

printf in the “hello world”program).

• Unless otherwise indicated, statements are executed in the order in which

they appear in the code. (Sequential-ness is important and sometimes trips

up beginners.)

Slide 10

Simple I/O in C

• Use printf to display predefined text and values of variables. Syntax is

that of “function call” (more later) with first parameter a “format string” that

may include “conversion specifications”. Followed by zero or more

expressions, one for each conversion specification. When statement is

executed, expressions are evaluated and the results turned into something

printable using those conversion specifications.

• Use scanf to get input. (It’s not really very good for interactive programs,

but it’s what almost all intro texts use, so we will too, but keep in mind that it

has limitations and annoyances.) Syntax very similar to that of printf

except that rather than expressions you have pointers that say where to store

value(s). More about pointers later; for now usually name of variable

preceded by &.



CSCI 1312 September 1, 2017

Slide 11

Simple Examples

• Recap from last time: Compile (and link) with gcc I recommend ALWAYS

ALWAYS compiling with optional flag -Wall so you get most optional

warnings — sometimes annoying, but often very helpful! Example

gcc -Wall hello.c)

Then execute with ./a.out.

• (Examples as time permits.)

Slide 12

Example — “Counting Change”

• Problem statement: Given a number of pennies, show how to represent it with

minimum number of coins (pennies, nickels, etc.).

• (To be continued.)



CSCI 1312 September 1, 2017

Slide 13

Minute Essay

• Any questions? How similar is all of this to something you’ve used before,

such as Matlab?


