CSCI 1312 September 6, 2017

Administrivia

o Reminder: Homework 1 due today, 11:59pm.

e Homework 2 on the Web; due next week. First programming homework!

Slide 1
More Administrivia
e When turning in homework, please do identify in the subject line both the
course and the assignment. | ask for this so it's easy for me to drop it into the
right “folder” for grading — I'll be getting assignments by e-mail for four
courses this semester.
Slide 2 e As with the minute essays, if there’s an urgent question in what you're

sending, put “question” or “urgent” in the subject line.

e |f you need/want to mail homework to me when you're logged in remotely (or
if you just want to know one more thing you can do from the command line!),
see the mail—-files script on the “Sample programs” page.




CSCI 1312 September 6, 2017

4 )

Minute Essay From Last Lecture

o Many people said what we had done in C so far looked at least a little familiar,
either to Matlab or to something else (C++ or Java/Arduino — in both cases,
no accident as these both use C’s syntax for basic things).

e A couple of people seemed unclear on the distinction between C (a
Slide 3 programming language) and Linux (an operating system). “Hm!"?

4 )

Example — “Counting Change”

e Problem statement: Given a number of pennies, show how to represent it with

minimum number of coins (pennies, nickels, etc.).

e First define the problem, possibly doing some examples without a computer.
Might be a good time to also come up with a short list of sample

Slide 4 inputs/outputs that can be used for testing later.
e Next figure out a strategy for solving it using the tools you have.

e Finally turn that into source code. Good idea to start by writing comments,
because ...
When writing source code you are writing for two audiences! the compiler,

yes, but also (usually) for human readers.




CSCI 1312 September 6, 2017

4 )

Example — “Counting Change”, Continued

e Turns out that there are two basic strategies we could try:
e One starts by first figuring out whole dollars, then quarters, etc.

e Another goes the other direction — first pennies, then nickels, etc. (But trying

a couple of examples — this one doesn’t work well.)
Slide 5

Defining Named Constants with Preprocessor Directives

e Sometimes it makes sense to use numeric constants in programs — e.g., in
“count change” example.

e But sometimes it's more readable, for humans, to give these constants a
name. Can do this with #define. Examples (somewhat contrived):

Slide 6 #define NICKEL_CENTS 5

Then when you write NICKEL_CENTS, compiler (strictly speaking, its

preprocessor) replaces it with 5.




CSCI 1312 September 6, 2017

e Have you tried writing and running any programs yet?

e Any questions?

Slide 7




