
CSCI 1312 September 11, 2017

Slide 1

Administrivia

• (What were you doing on this date in 2001?)

• Homework 1 grades e-mailed Saturday. (This is how you will get feedback on

programming assignments.)

• Reminder: Homework 2 due Wednesday. Please remember in the subject

line to identify both the course and the assignment! (Most of you did for

Homework 1, but not all.)

• First quiz next Monday. About 10 minutes, end of class, “open book / open

notes” (meaning access to textbook, your notes, anything on the course Web

site, nothing else). Topics include anything we cover up through Friday (so, C

programming as covered so far, material about base 2 and how used to

represent integers in computers). Meant to be not stressful and not

something you need to study for, beyond a quick review.

Slide 2

Minute Essay From Last Lecture

• Off-topic but interesting questions:

“I’ve heard of 64-bit encryption; anything stronger?” (Yes.)

“What does it mean to say a processor is 32-bit? 64-bit? A friend also says

that while addition and multiplication are both fast, division is not. Why?”

• Most had no questions about Friday’s lecture, but a few were uncertain about

whether any of it matters. So . . .

CSCI 1312 September 11, 2017

Slide 3

Binary Numbers — Recap

• General review of binary numbers and arithmetic on them is meant as

background for understanding how computers represent integers internally.

That in turn is meant to help you understand some of the limitations

associated with C integer types.

• Discussion of how to convert among number systems is mostly I-think-useful

background, but also because the two ways of converting from decimal to

binary show how there can be more than one way to solve a problem.

Slide 4

C and Representing Numbers — Integers

• Computer hardware typically represents integers as a fixed number of binary

digits, using “two’s complement” idea to allow for representing negative

numbers.

• C, like many (but not all!) programming languages bases its notion of integer

data on this, but also has a notion of different types with different sizes.

• Unlike many more-recent languages, C defines for each type a minimum

range rather than a definite size. Intent is to allow efficient implementation on

a wide range of platforms, but means some care must be taken if you want

portability.

CSCI 1312 September 11, 2017

Slide 5

C and Representing Numbers — Integers, Continued

• Because data is fixed in size, “overflow” is possible. Some hardware supports

detecting that, but C doesn’t assume that’s possible, so no easy way to check.

Programmers (should?) check that each variable is of a type big enough to

hold all anticipated values.

• (Why oh why . . . ? My guess is that it’s in keeping with the goals of “possible

to implement many diverse platforms” and “efficient code”.)

Slide 6

C and Representing Numbers — Real Numbers

• Hardware also typically supports “floating-point” numbers, with a

representation based on a base-2 version of scientific notation. (Review slide

from last time.) This allows representing not only fractional quantities but also

allows representing larger numbers than would be possible with fixed-length

integers. Notice that only fractions that can be written with a denominator

that’s a power of two can be represented exactly!

• Again C goes along with this and provides different “sizes” (float and

double). As with integers, exact sizes not specified, only minimum criteria.

CSCI 1312 September 11, 2017

Slide 7

Text Data

• Remember that computers represent everything using ones and zeros. How

do we then get text? well, we have to come up with some way of “encoding”

text characters as fixed-length sequences of ones and zeros — i.e., as

small(ish) numbers.

• (To be continued later in the semester.)

Slide 8

Sidebar(?): Type Conversions

• Implicit conversions: When you assign a value of one type to another (e.g.,

float to int), or write an expression that mixes types, C will perform an

implicit conversion.

• Explicit conversions: Putting a type in parentheses before an expression

means you want to convert to the indicated type. Example:

(float) (1 / 2)

versus

(float) 1 / (float) 2

CSCI 1312 September 11, 2017

Slide 9

Conditional Execution

• So far all our programs have executed the same statements every time, just

maybe with different numbers.

• Often, though, we want to be able to do different things in different

circumstances — for example, print an error message and stop if the input

values don’t make sense (such as a negative number for the program to make

change).

• So, C (like most languages) provides some constructs for conditional

execution. Before we talk about them, we need . . .

Slide 10

Boolean Expressions

• A Boolean value is either true or false; a Boolean expression is something

that evaluates to true or false.

• We can make simple examples in C using familiar math comparison

operators. Examples:

– x > 10

– y <= 5

– x == y (Note the use of == and not =!)

CSCI 1312 September 11, 2017

Slide 11

Boolean Expressions, Continued

• Boolean algebra defines some operators on these values; the most important

for us are written in C as

– ! — “not”, true if the operand is false.

– && — “and”, true if both operands are true.

– || — “or”, true if either operand is true (or both are).

• Can use these to build up complex expressions. As with arithmetic

expressions, use parentheses when in doubt. Examples:

– (x >= 0) && (x <= 10)

– !(x == y) (though we could also just write x != y).

Slide 12

Boolean Expressions in C

• Although there are only two Boolean values, C represents them as ints,

with 0 meaning true and anything else meaning false. (Usually you don’t care

about this, but it can be good to know.)

• This means that the compiler will accept both x == y and x = y, but

they mean different things. Very common mistake (and not just for

beginners!). Compiler will often warn you about this (though you may need to

use that -Wall flag).

CSCI 1312 September 11, 2017

Slide 13

Conditional Execution in C — if/else

• To execute a statement if an expression evaluates to true, use if:

if (x > 0)

printf("greater than zero\n");

• To execute one statement if an expression is true, another if it’s false, use if

and else:

if (x > 0)

printf("greater than zero\n");

else

printf("not greater than zero\n");

Slide 14

if/else, Continued

• To execute a group (“block”) of statements rather than just a single statement,

use curly braces for grouping:

if (x > 0) {

printf("greater than zero\n");

printf("and that is good\n");

}

else {

printf("not greater than zero\n");

printf("and that is bad\n");

}

• What happens if you forget the braces? The program may still compile and

run, but it probably won’t do what you meant.

CSCI 1312 September 11, 2017

Slide 15

if/else, Continued

• Several styles for where to put the curly braces. Which is best? Some people

care; I say pick one that’s readable (to humans) and stick with it.

• (Remember that you’re writing for “two audiences” — compiler an humans.)

Slide 16

Conditional Execution, Continued

• What if more than two? We could “nest” if/else constructs, e.g.,

if (x < 0) {

printf("less than\n");

}

else {

if (x > 0) {

printf("greater than\n");

}

else {

printf("equal\n");

}

}

• But this gets ugly fairly quickly. So . . .

CSCI 1312 September 11, 2017

Slide 17

Conditional Execution, Continued

• Better:

if (x < 0) {

printf("less than\n");

}

else if (x > 0) {

printf("greater than\n");

}

else {

printf("equal\n");

}

• Can have as many cases as we need; can omit else if not needed.

Slide 18

Simple I/O, Revisited

• We can now do simple error-checking that scanf did what we asked.

C-idiomatic way looks like this simple example:

if (scanf("%d", &x) == 1)

/* okay */

else

/* error */

CSCI 1312 September 11, 2017

Slide 19

Simple I/O, Revisited

• Doing a really good job with interactive input is surprisingly tricky — what

constitutes an error, how do you prompt user to try again.

• So for this class we’ll focus on some simple safety checks: if input should be

numeric it is, values make sense for the program (e.g., input to “count

change” program is not negative, etc.).

• For this class it’s usually best to just bail out on bad input, rather than retrying.

Slide 20

Minute Essay

• Have you previously used something that supports conditional execution

(Matlab?), and if so how does C’s version compare to it?

• I should have asked last time, but belatedly: How much of the material about

binary numbers was new to you and how much was review?

