
CSCI 1312 September 13, 2017

Slide 1

Administrivia

• Reminder: Homework 2 due today. Please remember in the subject line to

identify both the course and the assignment!

Slide 2

Minute Essay From Last Lecture

• Most people had seen some form of conditional execution in other

environments (mostly Matlab). I think that helps!

• Most people had some exposure to binary numbers, but most said at least

part of the material from last week was new. So, not a waste of class time —

I’m glad!

CSCI 1312 September 13, 2017

Slide 3

Condiional Execution — Recap/Review

• C, like most if not all programming environments, supports conditional

execution. Syntax is

if (boolean-expression)

statement1

else

statement2

where statement1 and statement2 can be single statements or blocks

enclosed in curly braces.

• else part can be omitted if not needed. Can “chain” testing several

conditions with else if (as in example from last time).

• Note that boolean-expression can be something involving a side effect, such

as the example last time of checking the value returned by scanf.

Slide 4

Conditional Execution, Continued

• Chains of else if are seful, but sometimes there’s a shorter way: If all of

the conditions are of the form

integer expression == value

then we can use the switch construct. Notice that characters (char)

count as integers in this context.

• Example (similar to calculator example in textbook) on next slide.

CSCI 1312 September 13, 2017

Slide 5

Conditional Execution, Continued

• char menu_pick; /* should be one of ’+’, ’-’ */

/* */

switch (menu_pick) {

case ’+’:

result = input1 + input2;

break;

case ’-’:

result = input1 + input2;

break;

default:

result = 0;

printf("operator not recognized\n");

}

Slide 6

Conditional Expressions

• C also provides a short way to express things of the form

if (condition)

variable = value1

else

variable = value2

namely the ternary (three operands) operator ?.

• Example:

sign = (x >= 0) ? 1 : -1;

assigns 1 to sign if x is non-negative, -1 otherwise.

• (Use with caution — compact, but can easily lead to code that’s difficult for

humans to understand.)

CSCI 1312 September 13, 2017

Slide 7

Conditional Execution, Continued

• A simple use for conditional execution is checking for input that doesn’t make

sense. But of course there are many others!

• Challenging part in many applications is to make sure you’ve covered all the

possibilities.

Slide 8

Example — Finding Roots of a Quadratic Equation

• As a rather math-y example, let’s write a program to compute and print the

roots of a quadratic equation

ax
2 + bx+ c = 0

• We’ll use the formula

−b±
√
b2 − 4ac

2a

and try to account for as many cases as we can . . .

CSCI 1312 September 13, 2017

Slide 9

Choosing Good “Test Data”

• After you’ve written a program, you need to try it with various input (“test it”).

• Choosing good tests is maybe a bit of an art, but you should try to choose

ones that:

– Demonstrate that all parts of your code work (i.e., that you explore all the

“paths” through it).

– Allow you to easily know whether the answer is right! i.e., choose inputs

where you can easily figure out what the answer should be.

Slide 10

Quotes of the Day/Week/?

• From a key figure in the early days of computing:

“As soon as we started programming, we found to our surprise that it wasn’t

as easy to get programs right as we had thought. Debugging had to be

discovered. I can remember the exact instant when I realized that a large part

of my life from then on was going to be spent finding mistakes in my own

programs.” (Maurice Wilkes: 1948)

• From someone in a discussion group for the Java programming language:

“Compilers aren’t friendly to anybody. They are heartless nitpickers that enjoy

telling you about all your mistakes. The best one can do is to satisfy their

pedantry to keep them quiet :)”

CSCI 1312 September 13, 2017

Slide 11

Minute Essay

• What about Homework 2 did you found interesting, difficult, or otherwise

noteworthy?

