CSCI 1312 September 15, 2017

4)

Administrivia

o Reminder: First quiz Monday. As noted previously, you will have access to the
textbook, your notes (paper or electronic), and the course Web site, but the
only allowed computer use is to access these (so no typing in code and trying
it). Intended to take no more than 10 minutes.

Likely questions include “what does this C program print to the screen?”,

Slide 1
“write some C code to do the following”, and questions about the material on
binary numbers.
o Homework 3 on the Web. Due next Friday. Two problems, both doable just
with assignment, simple 1/0O, and conditional execution.
Minute Essay From Last Lecture
e Several people mentioned that the seconds problem was similar to the
counting-change example from class. That was on purpose!
Several also mentioned that the examples in general were helpful. That also
is what | aim for!
Slide 2 e A few also mentioned that actually writing programs helped clarify a lot of

things. Indeed. “Not a spectator sport”? (Though | think there can be value in
watching someone with more experience program — otherwise | wouldn’t do
so much of it in class.)

e Several people mentioned being initially surprised by what you get in C when
you write 5 / 9. That's a lot of the reason | have students do this program!

CSCI 1312 September 15, 2017

Functions and Problem Decomposition

e So far all our programs have been one big chunk of code. This is okay for
simple programs, but quickly becomes difficult to understand as problems get
bigger.

e Further, some things we don’t want to, or really can’t, write ourselves, such as
Slide 3 the code for input/output.

e So C, like many/most other programming languages, gives you a way of
decomposing problems into subproblems. C calls them functions.

C functions are similar to functions in math, except that they can have side
effects (similar to how evaluation of expressions can have side effects).

Using this feature to good effect is something of an art, but experience helps.

. J

Functions in C, Continued

e Every function has
— A name (where rules for names are the same as those for variables).
— Zero or more inputs (called parameters).
— Areturn type (void to indicate that the function doesn’t return anything).

Slide 4 — Some code to be executed when the function is called.

o When you call (use) a function, you
— Supply values for inputs (pass in values for parameters).

— Optionally, use the value returned by the function. The function call is an
expression, as discussed previously, and its value is the value returned by
the function.

CSCI 1312 September 15, 2017

Defining and Using Functions

e Simple example of defining and using a function to add two integers:

int add(int a, int b) {

return a + b;

int main(void) {

Slide 5 int result = add(l, 2);
printf ("$d\n", result);
return 0;

}

e add has two parameters called a and b, which are basically variables local
to the function. When we call add from main, values 1 and 2 are copied
into these variables. The code in add executes until it reaches a return.
At that point, we go back to the calling function, and the value of the function

K call is whatever is after the keyword return.)

Functions in C — Declaration Versus Definition

e Many languages let you put function definitions in any order you want, and
even split them up among files.

e But some of this requires the compiler to be somewhat smarter than C
compilers are required to be. In C, functions must either be defined or
Slide 6 declared before being used.

e Function declarations give function name, number and types of parameters,
and return type. Syntax is just like that for function definitions, except no
parameter names needed, and body is replaced with a semicolon.

e For your own functions, you can either define them before using them, or
define them in whatever order you like and put declarations at the top.

e For library functions? declarations are part of what's supplied by # include
directives.

. J

CSCI 1312 September 15, 2017

4)

The main Function, Revisited

e As noted, every C program you/we have written so far includes a definition of
a function called ma in. All complete C programs must have such a function.

e main is defined in your code:

— It has no parameters. (Actually, it can — there’s an alternative definition
Slide 7 that allows it to accept command-line arguments, similar to the ones that
follow commands such as gcc, 1s, etc. Later!)

— It returns an integer value.

e main is called by some type of environment (the command shell for us,
when you type . /a.out after compiling). It gives your code the optional
parameters (more about this later) and receives the value you return. Return
value can be used to indicate success/failure (useful for shells that
themselves support conditional execution).

. J

“Hello World” Program, One More Time

e Historical/cultural aside: Among computer programmers, it's considered
traditional that the first program one writes in a new language just prints “hello
world” to the screen — maybe not the simplest possible program, but close.
Particularly apt for C, because the tradition was begun by an early and still
authoritative work on C (The C Programming Language, Kernighan and

Slide 8 Ritchie).

e Almost all of this program, and other examples, should now more or less
make sense! (Exceptions are representation of character strings, & syntax for
parameters. Soon!)

CSCI 1312 September 15, 2017

C Library Functions

e Standard C comes with a number of library functions to do things many
programs want to do.

o Examples we've seen so far — scanf, printf.
o UNIX/Linux systems normally have man pages for these functions, describing

Slide 9 parameters and return values in full detail (hence, not always easy reading).
(Tip: man printf gives the man page for a command rather than the C
function. Use man 3 printf to get what we want.)

(Tip: When reading a man page, h will bring up a summary of what keys do
what — page up/down, quit, etc.)

4)

Defining and Using Functions — Example

e As a somewhat contrived example, we could rearrange the “solve a quadratic

equation” example from previous class.

e By putting the code to solve the equation and print results in a function, we
can also easily have it print some examples/tests. Maybe do this before
Slide 10 prompting for input?

CSCI 1312 September 15, 2017

e Any questions?

Slide 11

