
CSCI 1312 September 29, 2017

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web; due next Friday.

• Sample solution for Homework 3 posted.

• As I hope I’ve mentioned previously, but to say it maybe-again: Most code

I/we write in class will be available via the course Web site “sample programs”

page. So no need to worry too much about keeping up as I type in code.

Also note that these are tidied-up versions, with more comments than I take

time to do in class — I don’t take time in class to write many comments or to

make error messages helpful, but you should in your homeworks, and the

Web-site versions are examples of what’s desired.

Slide 2

Minute Essay From Last Lecture

• Everyone had seen loops in some other context, though some said they

weren’t comfortable with them or didn’t remember much. We’ll use them a lot!

• One person asked about when to use while and when to use for. In C

you can (almost?) always use either one, so it’s kind of a matter of style,

but . . . A little more today.



CSCI 1312 September 29, 2017

Slide 3

Loops — Recap/Review

• Loops, like recursion, are a way to repeat some operation. Useful in applying

the same operation to all elements of some collection or in repeating an

operation until some condition is met.

• What all these ways of repetition have in common:

– A starting point (initial condition, first element of a collection).

– The operation to repeat.

– How to move from one iteration to the next.

– When to stop (though the syntax often is such that what you actually say is

when not to stop).

Slide 4

Loops — Recap/Review, Continued

• Last time we looked at basic syntax for for, while, and do while

loops.

• When to use which one? “it depends”, and sometimes a matter of style, but in

general:

• If you know how many times you want to repeat something, a for loop is

probably more idiomatic.

• If you don’t, a while or do while is probably better. (I find that I only

rarely use do while.)



CSCI 1312 September 29, 2017

Slide 5

Loops Versus Recursion

• As noted in class, recursive functions can be simple to write but potentially

inefficient (though in some cases a sufficiently smart compiler can reduce or

eliminate the inefficiency — look up “tail recursion” to find out more).

• For other problems, a loop is simpler to write — loop versions of many of the

in-class examples of recursion are as simple or simpler, and that program to

get an integer from input without using scanf would have been much

simpler with loops. So it may seem that loops are better.

• But there problems for which recursive solutions are much simpler to write

and get right, while non-recursive solutions are decidedly not simple —

anything involving “trees”, plus at least two widely-used algorithms for

“sorting” (putting things in order).

Slide 6

Loops — More Examples

• First let’s modify the “sum of integers” program to compute an average. Both

programs are examples of what one might call a “running total” pattern.

• We could also rewrite that “get an integer” program to use a loop or loops . . .



CSCI 1312 September 29, 2017

Slide 7

Numerical Computation

• A big use of computers is in solving (exactly or approximately) mathematical

problems — “numerical computation” or “numerical analysis”. Matlab is one

tool for this, and/or you can write your own programs in a general-purpose

programming language. Often (maybe always?) these involve various forms

of repetition.

• An example is “numerical integration”, in which you approximate a definite

integral (area under a curve) by computing areas of rectangles and adding

them up. As an example . . . (next time).

Slide 8

Minute Essay

• What was noteworthy (interesting, difficult, etc.) about Homework 4?


