
CSCI 1312 October 6, 2017

Slide 1

Administrivia

• Reminder: Homework 5 due today. Okay to turn in incomplete version today,

better version soon.

• Quiz 3 scores were, well, “disappointing”? I’ll ask you why on the minute

essay, but to me this feels like a bad sign. ?

Slide 2

“Random” Numbers — Recap

• To me this is kind of deep and fascinating topic. A not-so-deep view:

• C’s rand() and srand() functions provide a way to generate sequences

of integers that look “random” (can’t easily predict the next one from previous).

• Usual procedure is to first call srand() to initialize and then call rand()

repeatedly to generate the sequence. Parameter to srand() can either be

chosen in some way meant to be unpredictable or in some way that lets you

repeat tests, possibly with different “seed” values.

• (Finish example from last time.)



CSCI 1312 October 6, 2017

Slide 3

Character Data

• As mentioned previously, in C we can represent characters as type char.

• Simplest way to input/output a single character is with getchar and

putchar. Note that getchar returns an int; this is so there can be a

“special” value (EOF) for “end of file”. (For input from a terminal, signal with

something system-dependent, control-D on Linux machines.)

• Functions in ctype.h classify characters as alphabetic, digits, etc.

Functions toupper() and tolower() do what their names suggest.

Slide 4

Files and C

• Why files? You probably already know: Things stored in memory vanish when

you turn the computer off; to preserve them, usually save them as files.

• We know one way for a C program to get its input from a file, or write its

output to a file — I/O (input/output) redirection. But this makes it difficult to get

input from more than one source, or save output in more than one place.

• So C (like many other programming languages) provides ways to work more

generally with files.



CSCI 1312 October 6, 2017

Slide 5

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

Unix doesn’t make a distinction, but other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Slide 6

Streams in C

• In C, streams are represented by the type FILE *. FILE is something

defined in stdio.h. (As usual, the * means pointer — discussed a bit

already, more later.)

(FILE is an example of an “opaque data type” — something defined in a

library, the details of which might vary among implementations and which

should not matter to users.)

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams — next slide.



CSCI 1312 October 6, 2017

Slide 7

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

Slide 8

Working With Streams in C

• To read from an input stream — fscanf or fgetc, almost identical to

scanf and getchar. To write to an output stream — fprintf or

fputc, almost identical to printf and putchar.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

• (Simple examples.)

• How to get names of files from user? Well . . .



CSCI 1312 October 6, 2017

Slide 9

Text Input in C

• We’ve seen how to read text a character at a time. Many programming

languages provide nice ways to get a whole line at a time. C isn’t really one of

them (and why that is may become clearer after we talk about arrays a week

or two from now).

• Many books show various not-perfect approaches; what I prefer instead for

filenames is to “pass them as command-line arguments” (more next time).

Slide 10

Minute Essay

• If you didn’t do well on Quiz 3, what do you think went wrong?

• Anything noteworthy to report about Homework 5?

• Anything you particularly want me to review Monday?


