
CSCI 1312 October 13, 2017

Slide 1

Administrivia

• Homework 6 on the Web. Due a week from Monday.

Slide 2

Files in C — Recap/Review

• Files in C based on notion of “streams” (input and output). Sequence of bytes

coming in or going out.

• Predefined streams stdin, stdout, stderr. Together with I/O

redirection (in shell) these give you a crude way to work with files.

• Or you can create your own streams, connected to files, with fopen.

• Read and write with fgetc, fputc, fscanf, fprintf. All very much

like functions you already know, but with one more parameter (stream).

CSCI 1312 October 13, 2017

Slide 3

Files, Continued

• (Review examples from last time.)

• How to get filenames? could prompt user and read in text, but in my opinion

there’s no really good way to do that in C, so what I prefer instead . . .

Slide 4

Another Way to Get Input — Command-Line Arguments

• (We can’t completely discuss this until a bit later, but it’s so useful for working

with files that we’ll do just a bit now.)

• You may have observed that most of the commands you use don’t prompt you

for input, but instead decide what to do based on what you type on the

command line after the command name? so the program must be getting that

information somehow, but — how? “command-line arguments” (e.g., for the

command gcc -Wall hello.c there are two command-line

arguments).

(And those commands? Many of them are C programs!)

• Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method.

CSCI 1312 October 13, 2017

Slide 5

Command-Line Arguments in C

• In C, command-line arguments are passed to main as an array of text strings

(we’ll talk later about arrays and text strings). So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(“Plus one”? yes, one of the arguments is something system-dependent,

often the path for the program’s executable.)

• Reference individual arguments via argv[0], argv[1], argv[2], etc.

• This turns out to be (I think!) a good way to pass text such as filenames to

your program.

Slide 6

Files — Examples

• (Example of character-oriented I/O with files.)

• (Example of formatted I/O with files.)

CSCI 1312 October 13, 2017

Slide 7

Sidebar: gnuplot

• A tool I like for both quick interactive plots and nice-looking ones to use in

papers is gnuplot. Available on most UNIX-like systems and (I think!)

optionally for other operating systems. Home page at

gnuplot.sourceforce.net. Can do 2D and 3D plots, the former

with Cartesian or polar coordinates.

• To start it, gnuplot. Brings up a command-line interface. Online help

available with help.

Slide 8

gnuplot, Continued

• Useful commands include plot to plot function(s) or data from file(s), set

to set various things (e.g., x and y ranges).

• Default output to terminal, but with set terminal and set output

you can instead store to a file in various formats.

• Can also put commands (plot etc.) in a file and execute batch-style, or with

load. Useful if you want to regerate plots when data changes.

• (Examples.)

CSCI 1312 October 13, 2017

Slide 9

Minute Essay

• Can you think of problems you might want to solve for which a program using

files would be a help?

• What tool(s) do you usually use to make plots (or do you)?

