CSCI 1312 October 13, 2017

Administrivia

e Homework 6 on the Web. Due a week from Monday.

Slide 1

4)

Files in C — Recap/Review

e Files in C based on notion of “streams” (input and output). Sequence of bytes

coming in or going out.

e Predefined streams stdin, stdout, stderr. Together with I/O
redirection (in shell) these give you a crude way to work with files.

Slide 2 e Or you can create your own streams, connected to files, with fopen.

e Read and write with £getc, fputc, f£scanf, fprint£f. All very much
like functions you already know, but with one more parameter (stream).

CSCI 1312 October 13, 2017

Files, Continued

o (Review examples from last time.)

o How to get filenames? could prompt user and read in text, but in my opinion
there’s no really good way to do that in C, so what | prefer instead . ..

Slide 3

Another Way to Get Input — Command-Line Arguments

e (We can’t completely discuss this until a bit later, but it's so useful for working
with files that we’ll do just a bit now.)

e You may have observed that most of the commands you use don’t prompt you
for input, but instead decide what to do based on what you type on the

Slide 4 command line after the command name? so the program must be getting that

information somehow, but — how? “command-line arguments” (e.g., for the

command gcc -Wall hello.c there are two command-line

arguments).

(And those commands? Many of them are C programs!)

e Most programming languages provide a way to access this text, often via
some sort of argument to the main function/method.

CSCI 1312 October 13, 2017

4)

Command-Line Arguments in C

e In C, command-line arguments are passed to main as an array of text strings
(we’ll talk later about arrays and text strings). So if you define main as
int main(int argc, char * argv[l) { }
argc is the number of arguments, plus one, and argv is an array of strings
Slide 5 containing the arguments.
(“Plus one”? yes, one of the arguments is something system-dependent,
often the path for the program’s executable.)

e Reference individual arguments via argv [0], argv[1l],argv[2], etc.

e This turns out to be (I think!) a good way to pass text such as filenames to

your program.

Files — Examples

e (Example of character-oriented 1/O with files.)

e (Example of formatted I/O with files.)

Slide 6

CSCI 1312 October 13, 2017

Sidebar: gnuplot

e A tool | like for both quick interactive plots and nice-looking ones to use in
papers is gnuplot. Available on most UNIX-like systems and (I think!)
optionally for other operating systems. Home page at
gnuplot.sourceforce.net. Cando 2D and 3D plots, the former
with Cartesian or polar coordinates.

Slide 7
e To startit, gnuplot. Brings up a command-line interface. Online help
available with he 1p.
gnuplot, Continued
e Useful commands include plot to plot function(s) or data from file(s), set
to set various things (e.g., and y ranges).
e Default output to terminal, but with set terminal and set output
you can instead store to a file in various formats.
Slide 8

Can also put commands (plot etc.) in a file and execute batch-style, or with
load. Useful if you want to regerate plots when data changes.

e (Examples.)

CSCI 1312 October 13, 2017

4)

e Can you think of problems you might want to solve for which a program using
files would be a help?

o What tool(s) do you usually use to make plots (or do you)?

Slide 9

