
CSCI 1312 October 16, 2017

Slide 1

Administrivia

• (None?)

Slide 2

Minute Essay From 10/02

• Question for was about uses for repetition. Some answers:

• Solving PDEs; numerical integration.

• Applying a function to each pixel in a photo.

• Doing a calculation at each point in a grid.

• “Guess and check” methods.

• (Others — all interesting!)



CSCI 1312 October 16, 2017

Slide 3

Minute Essay From Last Lecture

• About uses for file, several interesting answers along the lines of what I had in

mind (programs that work with files), but several people also mentioned using

files as a way of breaking up a long program into pieces. (!)

More in next slides . . .

• About programs for making plots, most people mentioned Excel and/or

Matlab, There were also mentions of R, EES, and Minitab.

Slide 4

Uses for Files

• Files are useful if you want to deal with input data from some source other

than “the keyboard”, or from more than one source.

• Files are also useful if you want to produce output data that can be saved for

plotting or other analysis (perhaps as input to another program).

• If uses for files aren’t occurring to you, consider that “real” programs such as

the ones you likely use frequently (word processors, spreadsheets, etc.) all

make use of files. Files are also likely involved if an application “remembers”

what you did in previous sessions.

• (Spreadsheets are to me kind of an interesting(?) case in that they bundle

together program-like logic, data, and — other things. To me this seems

wrong-headed, but they’re very popular!)



CSCI 1312 October 16, 2017

Slide 5

Files and Program Structure

• All the programs we’ve written have been single files. Fine for small programs

but seems like it might be unwieldy for large ones, no?

• So usually code for large programs is split into multiple files, which can be

separately compiled and then “linked” together to form an executable. This

also allows reuse of the same function(s) in multiple programs. We’ll do

examples of both, later.

• “Library” functions build on this idea: Someone writes code for them, typically

splitting it into a .h file with just declarations of functions (e.g., stdio.h)

and a .c file with code for functions. The code is compiled and turned into

something that can be linked into user programs. What’s distributed might be

just those .h files and the compiled code.

Slide 6

Why Arrays?

• Suppose you wanted to write a program to count how many times each letter

occurs in the program’s input. What would you do? Is there an obvious way to

solve this with what we’ve discussed so far?



CSCI 1312 October 16, 2017

Slide 7

Why Arrays?, Continued

• You could have a variable for how many A’s, one for how many B’s, etc., and a

huge switch construct. But how ugly . . .

• What seems to be needed is something similar to subscripted variables in

math — an array.

• Other uses abound — e.g., if working with large amounts of input, sometimes

you can process elements as you read them (e.g., our program to compute an

integer sum), but sometimes it’s necessary or at least convenient to have

them all in memory at once.

Slide 8

Arrays

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many elements of the

same type (int, float, etc.) and give a common name to all. You can

then reference an individual element via its index (similar to subscripts in

math).



CSCI 1312 October 16, 2017

Slide 9

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

old C, it had to be a constant. In newer C, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

Slide 10

Example — Variance

• As an example of a calculation where it’s necessary (or at least convenient) to

have all input values in memory at once, consider computing variance of

inputs, where variance of a0 · · · an−1 is defined as the average of

(ai − avg)2 (avg is the average of the ai’s).

• Unless we can be clever somehow, we can’t start computing this sum until we

have the average, and computing that requires us to read all the inputs, but

then we need to read them again, which might not be possible, so store

them . . .



CSCI 1312 October 16, 2017

Slide 11

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements

with indices 0 through n− 1. What happens if you reference element -1? n?

2n?

• Well, the compiler won’t complain. (How would it know to?) And at runtime,

the computer will happily compute a memory address based on the starting

point of the array and the index. If the index is “in range”, all is well. If it’s not

(i.e., it’s “out of bounds) . . .

Slide 12

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable.” Maybe it’s outside the memory your program can

access, in which case you probably get the infamous “Segmentation fault”

error message.

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. (This is the essence of the buffer overflows you may hear

mentioned in connection with security problems.)

• What to do? Be careful. (Probably worth noting here that many more-recent

languages, for example Java, Scala, and Python, protect you from such errors

by “throwing an exception”, which by default crashes your program, but with

information about what went wrong.)



CSCI 1312 October 16, 2017

Slide 13

Arrays — Summary

• Arrays are very useful and extend the range of what we can (easily) do.

• However, in C they open up new sources of potential error, and because

they’re fixed in size (when you create them), I say avoid their use when you

easily can.

Slide 14

Minute Essay

• Have you seen arrays before (maybe in Matlab)?

• Either way — can you think of uses?


