
CSCI 1312 November 1, 2017

Slide 1

Administrivia

• Reminder: Homework 7 due today.

• Quiz 4 scores not great overall, though some were very good.

Slide 2

Dynamic Memory and C

• With the old C standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays help with that, but don’t solve all related problems:

In most implementations, space is obtained for them on “the stack”, an area of

memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).



CSCI 1312 November 1, 2017

Slide 3

Dynamic Memory and C

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(How this helps — most implementations differentiate between two areas of

memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• Dynamic memory allocation also needed to build “ragged” arrays (arrays in

which rows are of different sizes) and “linked” data structures (later).

Slide 4

Dynamic Memory and C, Continued

• To request memory, use malloc.

• To return it to the system, use free. (For short simple programs you can

probably get away with skipping free since the operating system will

probably clean up after you, but for longer and more complicated programs,

you should clean up when you can, or eventually you may run out of memory.)



CSCI 1312 November 1, 2017

Slide 5

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *

20);

or better:

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

and then

free(nums);

free(some text);

• Book recommends “casting” value returned by malloc. Other references

recommend the opposite! But you should check the value — if NULL, system

Slide 6

was not able to get that much memory.

• Example — program to generate and sort “random” numbers, revised.



CSCI 1312 November 1, 2017

Slide 7

Multi-Dimensional Arrays in C, Revisited

• Allocating multi-dimensional arrays in C can be ugly — either allocate with

fixed size or use VLAs (probably not great for big arrays).

• Now that we know about dynamic memory allocation and more about

pointers, can do better. Looking only at 2D arrays for now, two approaches.

Both involve representing array as array of arrays/pointers:

• One way is to first allocate array of pointers and then fill it with pointers to

dynamically-allocated 1D arrays. (Example code.)

• Another way is to first allocate array of pointers and 1D array big enough to

hold whole array, and then fill array of pointers with pointers into this big array.

(Example code.)

Slide 8

Minute Essay

• Anything noteworthy about Homework 7?

• If you didn’t do well on Quiz 4, what do you think went wrong? To me the way

to approach such a problem involves “tracing through” code — here, writing

down what values are put in the array by the first loop and then figuring out

how they’re used in the second loop.

• How are you finding the workload for this class? about right for a 3-credit-hour

course? light? heavy?


