
CSCI 1312 November 3, 2017

Slide 1

Administrivia

• Homework 8 still in work. By Monday I hope, and you’ll have a week to work

on it.

Slide 2

Minute Essay From Last Lecture

• Most people thought the workload was okay, though a couple mentioned that

the homeworks were getting harder. Not a surprise, though I’ll try to keep

them reasonable.

• About Homework 7, nothing really stood out, except a few people mentioned

researching memoization. I didn’t intend that you’d need to do that!

• About the quiz (which by the way was Quiz 4 — yes, its heading was wrong),

nothing really stood out. My only suggestion if you have trouble

understanding what code is doing is to trace through it step by step, writing

down what values are assigned to variables.



CSCI 1312 November 3, 2017

Slide 3

Arrays — Review/Recap

• VLAs nicer to work with but can be limited in size. (Bubble-sort example

programs — notice that creating a VLA with a size that’s ‘too big” crashes the

program, while creating an array of the same size with malloc is more

likely to work, or at least to fail in a less inscrutable way.)

• Dynamic memory allocation is more flexible. Multi-dimensional arrays are a

little tricky, but doable (review examples).

Slide 4

Text Data — Single Characters

• char is considered an integer type and can be worked with as such. Note

that while these days ASCII is by far the most common encoding, standard

doesn’t require that, and there are other possibilities.

• Many library functions for working with single characters (e.g., isalpha).

• Character literals represented using single quotes.

• Can read in / print single characters with scanf or printf using %c. Or

can use getchar, putchar. Note that getchar returns an int.

Why? so it can return special value EOF when no more input.



CSCI 1312 November 3, 2017

Slide 5

Text Data — Strings

• Most more-recent languages have nice ways of working with “strings” of text

data that hide details and provide nice functionality.

• C, in contrast, provides a bare-bones version, in which text strings are

represented as arrays of char, with an end-of-string character (’\0’) that

allows an array of fixed size to store strings of different sizes.

Simple but subject to all the perils of arrays!

• String literals represented using double quotes. Can include “escape”

characters (e.g., ’\n’.)

Slide 6

Text Strings — Output

• Can use printf with %s.

• Can also use puts (which adds a newline).



CSCI 1312 November 3, 2017

Slide 7

Text Strings — Input

• Surprisingly (or not, given C’s minimalist implementation of arrays), no nice

way to do this!

• Can use scanf, but no nice/general way to be sure you don’t overflow array,

and getting something that includes whitespace may be tricky.

• Can get a whole line with fgets, but must provide a fixed-size array (so,

what size?) and deal with newlines.

• gets looks useful but observe what its man page says(!).

• Consider processing data character by character, or using command-line

arguments.

Slide 8

Working With Text Strings in C

• Once you have some “strings” in your program, what can you do with them?

• You can work on them as arrays of character (that’s what they are) or using

pointers (as in the example earlier with an array of ints). (Example.)



CSCI 1312 November 3, 2017

Slide 9

Minute Essay

• None really — sign in (unless questions?).


