
CSCI 1312 November 15, 2017

Slide 1

Administrivia

• Reminder: Homework 9 due Friday.

• Last quiz the Monday after break. Topics TBA.

Slide 2

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and

they can be ugly to work with in some ways (e.g., no nice way to do I/O with

them). Worth(?) noting that other languages (Scala for example) provide nicer

ways to do this.



CSCI 1312 November 15, 2017

Slide 3

User-Defined Types in C — union

• For completeness we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See discussion in textbook about this; it can be useful, but can also make

code more difficult to understand.

Slide 4

User-Defined Types and Library Code

• Library code often makes use of “opaque” types (e.g., FILE).

• Implementing this often involves separating functionality into interface (.h file

containing type definitions, function declarations) and implementation (.c file

containing function definitions. (Example later.)



CSCI 1312 November 15, 2017

Slide 5

Functions as Parameters to Other Functions

• There are situations in which it’s useful to allow functions to use other

functions as parameters.

• One example is sorting — the same algorithm applies to sorting anything for

which there’s a well-defined “less than” operator, so sorting ints is much like

sorting doubles, which in turn is much like sorting strings (except that

things get a little tricky there because they have varying lengths). So —

maybe a general sort function, with one parameter that represents the “less

than” operation to use?

• Another example is our numerical-integration program — we could use much

the same code to perform numerical integration on different functions if we

could somehow make the function to be integrated a parameter.

Slide 6

Functions as Parameters to Other Functions, Continued

• Some languages provide nice built-in support for this idea (“functions are

first-class objects”). Examples go back to early “functional languages” and

include several more-recent languages such as Scala, Python, and Java

(though it’s a little clumsy in Java).

• C provides a way to get this effect, via “function pointers”.



CSCI 1312 November 15, 2017

Slide 7

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const void *, const void *);

and using my compare as the last parameter to qsort.

(Revised sample program.)

Slide 8

Function Pointers

• Another good use would to something generalizes the code we wrote to

approximate π with numerical integration:

• Pretty much the same calculations could be used to approximate any definite

integral; just provide start and end points and function.

• (Look at code.)



CSCI 1312 November 15, 2017

Slide 9

Minute Essay

• Anything noteworthy about Homework 8?

• If you lost points on the second problem of Quiz 5 (which almost everyone

did), can you say what you think went wrong?

• Anyone not planning to be here Monday?


