
CSCI 1312 November 17, 2017

Slide 1

Administrivia

• Reminder: Homework 9 was due today: deadline extended to Monday.

• Homework 10 (last one!) to be on the Web by Monday; due probably in two

weeks.

Slide 2

Minute Essay From Last Lecture

• At least a few people found Homework 8 interesting or fun. More than one

said it turned out to be not as intimidating as they thought. Good!

• About the quiz question, no responses really stood out, except that a few

people I think are still having trouble figuring out, for “write some code”

questions, what’s being asked for — a complete program, or a function that

returns a value, or a function that prints something, or what. I think if you read

such questions carefully it should be clear, but maybe pay more conscious

attention to what your code is supposed to do in the way of input and output?



CSCI 1312 November 17, 2017

Slide 3

User-written “Library” Code

• You know about calling functions in the C standard library (e.g., printf) in

your code. One advantage of having a library is that this code only has to be

written once, and then every program can use it.

• If you write more-complex programs, it may make sense to write your own

“library” of functions to be called from more than one program, putting them in

a separate source file. (Homework 10 will be an example — a few functions

that make up a “library”, and two programs that use these functions.)

Slide 4

User-written “Library” Code, Continued

• How to “package” these library functions — at least two possibilities.

• One is to put them in a .h file and use #include to include it in every

program that uses the functions.

• Another way (which is pretty much how the standard library functions are

packaged) is to have a .h file containing declarations and a companion .c

file with definitions. You then #include the .h file in programs that use

the functions, and use “separate compilation” . . .



CSCI 1312 November 17, 2017

Slide 5

Building Large Programs — Separate Compilation

• For large programs it’s often better to split up code into more than one source

file — for readability if nothing else.

• How then to make the executable? A good way is to compile each .c file

separately (with gcc -c) and then use gcc to “link” the resulting .o

(“object code”) files to produce the executable. (Note too that while gcc

names the executable a.out by default, it will call it something else if you

say to.)

• Sounds complicated? well, not as simple as compiling a single .c file, but . . .

Slide 6

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program: When you change something, just recompile parts that are affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

• (Caveat: make is a UNIXworld thing. I feel sure there’s something analogous

for people developing software under Windows but am not sure what it is!)



CSCI 1312 November 17, 2017

Slide 7

Makefiles

• First step in using make is to set up “makefile” with “rules” describing how

files that make up your program (source, object, executable, etc.) depend on

each other and how to update the ones that are generated from others.

Normally call this file Makefile or makefile.

(Example: Makefile.v1 in “makefile example” on sample programs page

— rename to Makefile to easily use.)

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 8

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.



CSCI 1312 November 17, 2017

Slide 9

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.

Slide 10

Variables in Makefiles

• You can also define variables; define with, e.g., CFLAGS = -Wall and

reference as $(CFLAGS).

• One good use is options to be used for all compiles.

• Another good use is to specify lists of files.



CSCI 1312 November 17, 2017

Slide 11

“Phony” Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.

Slide 12

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99



CSCI 1312 November 17, 2017

Slide 13

Predefined Implicit Rules, Continued

• You can also make use of these predefined implicit rules to make your

makefiles simpler.

• (Example: Makefile.v2 in example.)

Slide 14

Minute Essay

• None really — just sign in?


