CSCI 1312 December 1, 2017

Administrivia

o Reminder: Homework 10 due Monday.

Slide 1
Linked Lists in C, Continued
e In class Monday we talked about linked lists, and | showed the beginnings of
code for a sorted linked list of ints.
e Look briefly at it again ... (We won'’t go into details in class, but it's on the
“sample programs” page if you're curious.)
Slide 2




CSCI 1312 December 1, 2017

“Collections” Types Review/Revisited

e Can think of a “collection type” as a way of representing a collection of data
items. Arrays are one; linked (linear) lists are another.

e There are many others, all beyond what we can cover in this course;
more-advanced courses in programming and computer science are apt to

Slide 3 discuss many or all of these ...

Sidebar: Abstract Data Types

e In computer science we talk often about “abstract data types”.

o Somewhat formally, an abstract data type is a set of values and some

operations on them.

e Simple example: fixed-size integers, with obvious(?) values and operations

Slide 4 including arithmetic and bit manipulation.

e Simple example: Boolean values, also with obvious values and operations

including logical “and”, logical “or”, etc.

e Less simple example: Linear list, with operations including insert, delete,
traverse, indexed access. Could be implemented with an array or with a

linked-list structure.




CSCI 1312 December 1, 2017

Stacks

e A “stack” is a list of values of a particular type (integers, say, or something
more complicated), with a restricted set of operations, often just “enqueue”
(add to the “tail” of the queue), “pop” (remove and return the top element),
and “is empty?” (l.e, this is a “last-in, first-out” linear list.)

Slide 5 e Turns out to be widely useful. This idea is how functions (including recursive
ones) are typically implemented, with a stack each element of which contain
values passed to the function, local variables, and a “return address”.

e Could be implemented using an array or as linked list.

Queues

e A “queue’” is a list of values of a particular type (integers, say, or something
more complicated), with a restricted set of operations, often just “enqueue”
(add to the “tail” of the queue), “dequeue” (remove and return the first
element), and “is empty?” (l.e, this is a “first-in, first-out” linear list.)

Slide 6 e Also widely useful any time you need to maintain something in first-in first-out
order.

e Could be implemented using an array (“circular queue” idea) or as linked list.




CSCI 1312 December 1, 2017

4 )

Trees

e A “tree” in computer science is a way of representing data organized in some
hierarchical way. Each is a collection of “nodes” that store a value and
pointers to “child nodes”.

e In the same way as a linked list is represented by a pointer to the first node, a
Slide 7 tree is represented by a pointer to its “root node”.

e Useful any time you want to represent a hierarchical structure (directories and
files, e.g.).

Trees, Continued

e “Binary trees” (in which each node has at most two children) are simpler to
represent and effective in many situations.

e “Binary search tree” is a binary tree where everything in the “left subtree” of a
node has smaller values and everything in the “right subtree”. Allows faster
Slide 8 lookup, sort of like binary search in an array.

e “Heap” is a binary tree where everything in both subtrees of a node has larger
values. Useful for maintaining a “priority queue” (with operations including
“remove and return smallest element” and “insert element”).




CSCI 1312 December 1, 2017

Graphs

e In some mathematical contexts, “graph” means a collection of nodes and
edges connecting them. Edges can be uni- or bi-directional. Nodes can store
values, and associated with each edge there can also be a value (a “weight”).

e Also turns out to be widely useful as a way of representing all kinds of things

Slide 9 — e.g., the classic traveling-salesperson problem.

e Can implement used a linked data structure or with various types of 2D arrays.

4 )

Associative Array

e An associative array is a way of storing (key, value) pairs. Conceptually it's an
array of such pairs, with operations that would include insert, delete, and
lookup (find the value associated with a key).

o Widely useful in situations where you want a collection of data with an easy
Slide 10 way to find particular elements. (For example, in a program to compute
student grades, you might have an associative array where the key is a

student name and the value is that student’s scores.)

e Provided by many higher-level languages (e.g., Scala has “maps”, and
Python has “dictionaries”). In C it's more work but (of course?) doable.




CSCI 1312 December 1, 2017

Hash Table

e A “hash table” is a meant-to-be-efficient way of implementing an associative
array, such that looking up a value using the key is reasonably fast.

e Basic idea is to define a reasonably-sized array and some way to map from a

key to an index into this array (“hash function”). Each element of the array
Slide 11 points to a list of (key, value) pairs, and to look for a particular key, you use the
hash function to map into the array and then search the list.

If the hash function and the table size are well-chosen, these lists will be
short, perhaps in many cases of length 1, making lookup fast.

e Also widely useful in the many circumstances in which fast lookup is desirable.
(As an example — in a minute essay last year someone asked about fast
access to items in “a database”? this idea would probably work for that.)

“Ragged Arrays”

e (This isn’t really an abstract data type, but it's another kind of collection, so

mention it here.)

o Sometimes useful to be able to define a “ragged array” — an array in which
rows can have different sizes. Not difficult in C, if you represent each row as

Slide 12 an array and have some way of remembering sizes of rows.

e An obvious(?) example is the second argument to main —it's a ragged
array of characters, with no need to explicitly save how many columns in each
row since strings are null-terminated.




CSCI 1312 December 1, 2017

e Can you think of situations in which one of these collection types (linear lists,

trees, graphs, etc.) would be useful?

e There’s so much we just haven’t been able to cover in this course. Any
questions you'd like me to try to answer Monday?

Slide 13




