
CSCI 1312 December 1, 2017

Slide 1

Administrivia

• Reminder: Homework 10 due Monday.

Slide 2

Linked Lists in C, Continued

• In class Monday we talked about linked lists, and I showed the beginnings of

code for a sorted linked list of ints.

• Look briefly at it again . . . (We won’t go into details in class, but it’s on the

“sample programs” page if you’re curious.)



CSCI 1312 December 1, 2017

Slide 3

“Collections” Types Review/Revisited

• Can think of a “collection type” as a way of representing a collection of data

items. Arrays are one; linked (linear) lists are another.

• There are many others, all beyond what we can cover in this course;

more-advanced courses in programming and computer science are apt to

discuss many or all of these . . .

Slide 4

Sidebar: Abstract Data Types

• In computer science we talk often about “abstract data types”.

• Somewhat formally, an abstract data type is a set of values and some

operations on them.

• Simple example: fixed-size integers, with obvious(?) values and operations

including arithmetic and bit manipulation.

• Simple example: Boolean values, also with obvious values and operations

including logical “and”, logical “or”, etc.

• Less simple example: Linear list, with operations including insert, delete,

traverse, indexed access. Could be implemented with an array or with a

linked-list structure.



CSCI 1312 December 1, 2017

Slide 5

Stacks

• A “stack” is a list of values of a particular type (integers, say, or something

more complicated), with a restricted set of operations, often just “enqueue”

(add to the “tail” of the queue), “pop” (remove and return the top element),

and “is empty?” (I.e, this is a “last-in, first-out” linear list.)

• Turns out to be widely useful. This idea is how functions (including recursive

ones) are typically implemented, with a stack each element of which contain

values passed to the function, local variables, and a “return address”.

• Could be implemented using an array or as linked list.

Slide 6

Queues

• A “queue” is a list of values of a particular type (integers, say, or something

more complicated), with a restricted set of operations, often just “enqueue”

(add to the “tail” of the queue), “dequeue” (remove and return the first

element), and “is empty?” (I.e, this is a “first-in, first-out” linear list.)

• Also widely useful any time you need to maintain something in first-in first-out

order.

• Could be implemented using an array (“circular queue” idea) or as linked list.



CSCI 1312 December 1, 2017

Slide 7

Trees

• A “tree” in computer science is a way of representing data organized in some

hierarchical way. Each is a collection of “nodes” that store a value and

pointers to “child nodes”.

• In the same way as a linked list is represented by a pointer to the first node, a

tree is represented by a pointer to its “root node”.

• Useful any time you want to represent a hierarchical structure (directories and

files, e.g.).

Slide 8

Trees, Continued

• “Binary trees” (in which each node has at most two children) are simpler to

represent and effective in many situations.

• “Binary search tree” is a binary tree where everything in the “left subtree” of a

node has smaller values and everything in the “right subtree”. Allows faster

lookup, sort of like binary search in an array.

• “Heap” is a binary tree where everything in both subtrees of a node has larger

values. Useful for maintaining a “priority queue” (with operations including

“remove and return smallest element” and “insert element”).



CSCI 1312 December 1, 2017

Slide 9

Graphs

• In some mathematical contexts, “graph” means a collection of nodes and

edges connecting them. Edges can be uni- or bi-directional. Nodes can store

values, and associated with each edge there can also be a value (a “weight”).

• Also turns out to be widely useful as a way of representing all kinds of things

— e.g., the classic traveling-salesperson problem.

• Can implement used a linked data structure or with various types of 2D arrays.

Slide 10

Associative Array

• An associative array is a way of storing (key, value) pairs. Conceptually it’s an

array of such pairs, with operations that would include insert, delete, and

lookup (find the value associated with a key).

• Widely useful in situations where you want a collection of data with an easy

way to find particular elements. (For example, in a program to compute

student grades, you might have an associative array where the key is a

student name and the value is that student’s scores.)

• Provided by many higher-level languages (e.g., Scala has “maps”, and

Python has “dictionaries”). In C it’s more work but (of course?) doable.



CSCI 1312 December 1, 2017

Slide 11

Hash Table

• A “hash table” is a meant-to-be-efficient way of implementing an associative

array, such that looking up a value using the key is reasonably fast.

• Basic idea is to define a reasonably-sized array and some way to map from a

key to an index into this array (“hash function”). Each element of the array

points to a list of (key, value) pairs, and to look for a particular key, you use the

hash function to map into the array and then search the list.

If the hash function and the table size are well-chosen, these lists will be

short, perhaps in many cases of length 1, making lookup fast.

• Also widely useful in the many circumstances in which fast lookup is desirable.

(As an example — in a minute essay last year someone asked about fast

access to items in “a database”? this idea would probably work for that.)

Slide 12

“Ragged Arrays”

• (This isn’t really an abstract data type, but it’s another kind of collection, so

mention it here.)

• Sometimes useful to be able to define a “ragged array” — an array in which

rows can have different sizes. Not difficult in C, if you represent each row as

an array and have some way of remembering sizes of rows.

• An obvious(?) example is the second argument to main — it’s a ragged

array of characters, with no need to explicitly save how many columns in each

row since strings are null-terminated.



CSCI 1312 December 1, 2017

Slide 13

Minute Essay

• Can you think of situations in which one of these collection types (linear lists,

trees, graphs, etc.) would be useful?

• There’s so much we just haven’t been able to cover in this course. Any

questions you’d like me to try to answer Monday?


