
CSCI 1312 (Introduction to Programming for Engineering), Fall
2018

Homework 10

Credit: 50 points.

1 Reading

Be sure you have read (or at least skimmed) the assigned readings from chapters 7 and 12.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per problem.
Submit your program source (and any other needed files) by sending mail to bmassing@cs.trinity.edu
with each file as an attachment. Please use a subject line that mentions the course and the assign-
ment (e.g., “csci 1312 hw 10” or “CS1 hw 10”). You can develop your programs on any system that
provides the needed functionality, but I will test them on one of the department’s Linux machines,
so you should probably make sure they work in that environment before turning them in.

Yes, this writeup is long. But I think the code you write need not be, and it’s an interesting
problem!

You may have heard claims that E is the most frequently-used character in English text, followed
by T, and so forth. Your mission for this assignment is to write two programs that together will
allow you to find out how true this claim is for selected text (and, okay, to give you practice working
with some course topics):

• The first program analyzes a single file of plain-text, counting occurrences of each alphabetic
character and writing results (characters and counts, but only for characters that occur at
least once) to an output file.

• The second program merges one or more files produced by the first program and writes results
to an output file.

(Why two programs? Mostly pedagogical reasons.) Writing the programs from scratch is nontrivial
(though you could probably do it), so to make it more doable I’m providing starter code that reduces
what you need to do and also gives you some practice with UNIX make, discussed in class. Once
you have an output file produced by the second program, you can use the Linux command

sort -n -r outfilename

to display the results in a way that shows the most-often-used letter first, etc.

To give you some practice working with structs in C, I want you to do this problem using an
array of a structs, with each struct containing a letter and a count of how many times it occurs
in the input(s). Since you need such an array in both programs, as well as code to look up a
particular letter and increment its counter, it would seem to make sense to have a “library” used
by both programs that declares/defines the struct and some needed functions. I’ve written code

1

bmassing@cs.trinity.edu


CSCI 1312 Homework 10 Fall 2018

that declares the needed struct and declares some functions for building and operating on the
needed array and also starter code for the two programs. Your mission will be to fill in the missing
pieces. There are several ways to combine this “library” code with the two programs, but what I
want you to do is to use the Linux utility make, as discussed in class. Starter code, with FIXME

comments showing where you need to add code:

• http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10/Problems/alphacoun
declarations of “library” functions with comments saying what they do.

• http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10/Problems/alphacoun
starter definitions of “library” functions.

• http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10/Problems/countalpha.c
starter code for countalpha program.

• http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10/Problems/mergecoun
starter code for mergecounts program.

• http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10/Problems/Makefile
“makefile” to build the two programs.

Rather than copying or downloading each of these files separately, you’ll probably find it easier to
download the ZIP file http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10/Problems/h
and unzip it with unzip hw10.zip. If you prefer to download individual files, NOTE that you
should use your browser’s “download” or “save” function to obtain the Makefile rather than copy-
ing and pasting text. This is because copy-and-paste will likely replace the tab characters in the
file with spaces, with bad consequences (since tabs are semantically significant in makefiles.)

The Makefile includes instructions for “building” the project. Note that just using gcc with a
single program, as we’ve been doing, won’t work, but once you have all the above files down-
loaded, typing make will produce two executables, countalpha and mergecounts, that you can run
(although they won’t do anything very interesting). You might try that before starting to write
code.

Instructions for specific files you need to change:

1. (5 points) The first file you need to change is alphacounters.c, which provides code for
functions declared in alphacounters.h. (Note that alphacounters.h also includes com-
ments describing what these functions do — very important!) There’s only one function you
need to write code for, the one that given a character finds the element of the array for it and
increments its counter, and I’m hoping that the functions I’m providing code for will give you
some hints about how to work with the array. You can check that your code at least compiles
by typing make again.

2. (20 points) The next file you need to change is the code for the first program, the one that
analyzes a single input file and produces an output file. The starter code checks that there
are two command-line arguments (filenames for input and output) and opens the input file.
Add code to do the following:

• Read the input file a character at a time and count, using the function update count

(written in the first step), how many times each alphabetic character occurs (but use
tolower() first to turn any upper-case characters into lower-case). Note that this func-
tion also tells you whether the character is even alphabetic — it returns false if not

2

http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
alphacounters.h
http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
alphacounters.c
http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
countalpha.c
http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
mergecounts.c
http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
hw10.zip


CSCI 1312 Homework 10 Fall 2018

— so you don’t need a separate check using isalpha. Note also that to get full credit
for this part you must use this function rather than trying to figure out another way to
update the right counter.

• Count the total number of characters and how many were alphabetic.

• For every alphabetic character that occurs at least once, write to the output file a line
with the character and the count.

• Print the total number of characters and the number of alphabetic characters.

This is probably easiest to understand with examples. If the input file looks like this:

testing 1 2 3 4?

TESTING 4 3 2 1!

the output file should look like this:

e 2

g 2

i 2

n 2

s 2

t 4

and the program should print this:

alphabet ’abcdefghijklmnopqrstuvwxyz’

14 alphabetic characters, 36 total characters

And if the input file looks like this:

Now is the time for all good persons

to come to the aid of their party!

the output file should look like this:

a 3

c 1

d 2

e 6

f 2

g 1

h 3

i 4

l 2

m 2

n 2

o 9

p 2

r 4

s 3

3



CSCI 1312 Homework 10 Fall 2018

t 7

w 1

y 1

and the program should print this:

alphabet ’abcdefghijklmnopqrstuvwxyz’

55 alphabetic characters, 72 total characters

3. (20 points) The last file you need to change is the code for the second program, the one
that merges output from repeated executions of the first program. The starter code checks
that there is at least one command-line argument, builds the array of structs, and calls a
function processfile for each input filename to process that single file. Add code to do the
following:

• Actually do something in processfile, in addition to printing the filename: Read letters
and counters from the file (more below about how to do this) and use this information to
update the array of counters. Print an error message if the file cannot be opened. (For
extra credit, also print an error message if the file doesn’t contain letters and counters.)
The function should return true if everything was okay, false if there was an error.

• After all input files have been processed, write to the output file a line for each element
of the array of structs for which the count is nonzero, printing first the count and then
the letter (this is to make it easier to sort the output with the sort command).

About reading lines from the input file, the obvious way to read a character and a long from
a file is with fscanf and a format string of "%c %ld", but this doesn’t work well after the
first line, because the %c picks up the newline character at the end of the second line. There
are several ways to cope with that; simplest may be to read into a character array of size 2
using format string "%1s %ld".

Here too this is probably easiest to understand with an example. Given the two output files
shown earlier, the program should combine them to produce an output file containing

3 a

1 c

2 d

8 e

2 f

3 g

3 h

6 i

2 l

2 m

4 n

9 o

2 p

4 r

5 s

11 t

1 w

1 y

4



CSCI 1312 Homework 10 Fall 2018

and print this:

alphabet ’abcdefghijklmnopqrstuvwxyz’

processing input file sample1-out.txt

processing input file sample2-out.txt

Finally, if you check for errors in the input files for the second problem (optional, for extra
credit), the program should give an error message for every line of this input file:

hello

x

100

x 1000x

4. (5 points) Finally, you should try your programs with some non-trivial input. The
http://www.gutenberg.org http://www.gutenberg.org is a good source of freely-available
text. I downloaded copies of two books (one by Jane Austen, one by P.G. Wodehouse) in UTF-
8 format, converted to plain-text, and made another ZIP file http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
with the results. Run your programs on these two files and send me your output files (re-
sults of running countalpha on each of the input files, and result of running mergecounts to
combine them).

If you find this sort of thing interesting, you could download additional books and try the
program with them. I used the following command to convert from UTF-8 to really-plain-
ASCII-text:

iconv -f UTF-8 -t US-ASCII -c infile.txt >outfile.txt

Or word-processing programs will also export to plain text, though if you try that route you
should probably open the resulting file in vim and make sure it looks like text.

If you do this, send me your additional input files for extra credit.

3 Honor Code Statement

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following about
collaboration and help (as many as apply).1 Text in italics is explanatory or something for you to
fill in. For programming assignments, this should go in the body of the e-mail or in a plain-text
file honor-code.txt (no word-processor files please).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

1 Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is

the ACM’s Special Interest Group on CS Education.

5

http://www.gutenberg.org
http://www.cs.trinity.edu/~bmassing/Classes/CS1312_2018fall/Homeworks/HW10
hw10-data.zip


CSCI 1312 Homework 10 Fall 2018

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

4 Essay

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what about the assignment you found interesting, difficult, or otherwise noteworthy. For pro-
gramming assignments, it should go in the body of the e-mail or in a plain-text file essay.txt (no
word-processor files please).

6


