
CSCI 1312 August 29, 2018

Slide 1

Administrivia

• Peer tutoring available for this class, organized by student ACM chapter (ACM

is the major professional organization for CS). Hours this semester are

M/T/W/R 5pm to 9pm in 270A and 270L, F and weekend by appointment,

starting next week. Great resource for getting help with homeworks!

• (Status check — does the bookstore have copies of the text yet?)

Slide 2

Minute Essay From Last Lecture

• Several people mentioned being surprised by how much you can apparently

do from the command line. I found this surprise surprising! but then I started

out with command lines.

It should make perfect sense, though, if you keep in mind that UNIX dates

back to an era in which command-line interfaces were the norm, and it still

tends to attract people who like this interface.



CSCI 1312 August 29, 2018

Slide 3

Review — Commands For Working With Files and

Directories

• cat, less to display files.

• cp, mv, rm to copy, move/rename, remove files. -i to prompt (rm) or warn

about overwrites (others). (Why isn’t this the default behavior? System was

designed to be expert-friendly and so assumes you meant what you said,

maybe.)

• mkdir, rmdir to create, remove directories.

• cd to move between directories. ls to display files in directory (-l for long

format, -A to also show hidden files, -d to show information about directory

itself.)

Slide 4

Other Useful Commands

• man command to get information (“man page”) about command Also

displays information about C-library functions.

Reference information rather than a tutorial, but usually very complete.

Sometimes there are multiple man pages with the same name (e.g., a

command and a function); man -a to get all of them (q to move from one to

the next).

man -k keyword to look for commands that might have something to do

with keyword.

• man uses less to page through documentation. Up and down arrows work

to move through file. / searches for text in file. q exits. h shows list of other

options.



CSCI 1312 August 29, 2018

Slide 5

Text Editors — Review

• “Text editor” is a program for creating and editing plain text (as opposed to,

e.g., a word processor).

• I use and will show in this class vim. Not especially beginner-friendly but

(IMO!) “expert”-friendly, and good for working with program source code.

• I showed a few basics last time. More in Dr. Lewis’s video lectures and my

“notes” listed under readings. Consider making yourself a “cheat sheet” of tips

that sound useful to you, so you’ll remember them when using this editor.

Using this editor is apt to be tedious if all you remember is the bare minimum.

Slide 6

A Little About Shell Customization

• Can be very useful to customize your shell a bit — e.g., to always use those

-i flags.

• To do this, edit file .bashrc . . .

No. First save old file (cp .bashrc save.bashrc), so if you really

mess up you can get the old one back.

Now edit .bashrc (with vim — “of course”?) and add lines such as

alias cp=’cp -i’

alias mv=’mv -i’

• Save, quit, open new terminal window (leave the old one open in case you

messed up), and if you type which cp you should see your alias. (If

something goes wrong, in old terminal window type cp save.bashrc

.bashrc to restore.)



CSCI 1312 August 29, 2018

Slide 7

Input/Output Redirection in UNIX/Linux

• A key feature of command-line environments, one that provides a lot of power,

is “I/O redirection”. Idea is that programs can get input from different sources

(keyboard, file, “pipe”) and write output to different destinations (terminal, file,

“pipe”), all without changing the program. Example:

myprogram < test1-in > test1-out

to have myprogram get its input from test1-in rather than the

keyboard, and put its output in test1-out rather than showing it on the

screen. (Overwrites test1-out. To append instead, use >>

test1-out.)

This is (part of) how I grade programming homework!

• “Pipes” connect output of one program with input of another. A common “use

case” is to page through long output by piping it into less — e.g.

ps aux | less

Slide 8

“Why C?” Revisited

• Recently we asked ENGR again about what language to use in this course.

Their answer indicated that at least some students will use C in a project at

some point. Good to know?



CSCI 1312 August 29, 2018

Slide 9

A First Program in C

• As you read sections of the textbook you may want to try running the

programs yourself. More about all of this soon, but today let’s do a “hello

world” program . . .

• (“Hello world” program? Yes. Traditional in some circles to have one’s first

program in a language print “hello, world” to “the screen”. Origins of this

tradition — inventors of C!)

Slide 10

A First Program in C, Continued

• First write the program using a text editor (e.g., vim) and save it with a name

ending in .c (say hello.c). (See the “sample programs” Web page for

what it looks like.)

• Next, compile the program (turn it into something the computer can execute).

Simplest command for that:

gcc hello.c

If no syntax or other errors, produces an “executable” file a.out.

• Run the program by typing ./a.out at the command prompt.



CSCI 1312 August 29, 2018

Slide 11

A Little More About the Program

• Almost everything in the simple program is standard boilerplate that all your

programs will have. We’ll talk more later about what it all means. For now

focus on the single line with printf; this is the one that accomplishes the

program’s purpose.

• With what we know now, we can’t write programs that are much more

interesting, though we could put in some more lines using printf. Try

that? Note that even this small addition illustrates something important:

Unless otherwise indicated, the computer executes code “sequentially” (in the

order in which it appears in the source).

Slide 12

Programming Basics and C

• Previous lecture described relationship between what humans write (“source

code”) and what computers execute (“machine language”).

• For traditional “compiled languages” such as C, source code must be

transformed not just into machine language, but into a complete “executable

file” (machine language for your code, plus machine language for any library

functions, plus information so operating system can load it into RAM and start

it up. (Detail: This is for “hosted environment”; in some environments in which

C is used, there may be no O/S.)

• So, what happens to your code . . .



CSCI 1312 August 29, 2018

Slide 13

Programming Basics and C, Continued

• Your code is first “compiled” into “object code” (machine language).

Then it’s “linked” with any library object code to form “executable file”.

Sometimes (as for examples we’re doing now) both steps happen as a result

of a single command.

• To recap, we’re basically using two tools, vim (to write/edit programs) and

gcc to compile them, and a command-line environment (terminal window) to

run both tools and also programs we write.

Slide 14

Minute Essay

• Students sometimes mention that what I do in class moves fast. Too fast? I

feel like you learn this stuff better by practicing/exploring at your own pace

outside class, but . . . ?

• Questions?


