
CSCI 1312 August 31, 2018

Slide 1

Administrivia

• Reminder: Homework 1 due Wednesday (11:59pm).

Slide 2

Minute Essay From Last Lecture

• No clear consensus w.r.t. “too fast” versus “about right”. I’ll try to slow down a

bit.



CSCI 1312 August 31, 2018

Slide 3

“Hello World” Program Revisited

• Look again at the program we wrote in class previously. Most of it is standard

boilerplate, to be discussed further soon. Single line you should pay attention

to now is the one with printf.

• Goal for today — describe how to extend this to get input from “standard

input” (keyboard by default), do simple computing, write results to “standard

output” (terminal window by default).

• (Maybe worth pointing out now that this is the style of programs we’ll write —

simple text-mode user interface. This is really all you can do in standard C.)

Slide 4

Sidebar: C Design Goals

• Many currently-popular languages are big and complicated and designed to

make the programmer’s job easier. Often they include huge “libraries” to

support interesting features such as GUIs, graphics, network communication,

etc., etc.

• C, in contrast, was intended to be efficiently implementable on a very wide

range of “platforms” (combination of hardware and operating system). It’s

therefore somewhat minimalist. GUIs, graphics, etc., can all be done from C,

but only by using libraries that aren’t part of standard C. And efficiency takes

precedence over programmer convenience.



CSCI 1312 August 31, 2018

Slide 5

Variables in C

• In C as in most/many other programming languages, you need temporary

storage for data — e.g. someplace to save an input value and/or intermediate

results. For this we use variables.

• In C variables must be declared, each with both a name and a type. Effect of

declaring a variable is to reserve memory (RAM) for a value of the specified

type and give it a name that can be referenced. (Similar to Matlab, except for

choice of types?) What a name can look like is somewhat restricted (see

textbook).

• Types in C are pretty basic — integers, “floating-point numbers” (numbers with

a fractional part), and characters. Integer types are represented as fixed-size

binary numbers and come in various sizes. More about the others later.

Slide 6

Variables in C

• Variables are given values by assignment statements (using =, which here

means “assign value on right to variable on left” rather than equality as in

math!).

• Okay to change value with repeated assignments.



CSCI 1312 August 31, 2018

Slide 7

Expressions in C

• What’s on the right side of an assignment — expression.

• Expressions in C are similar to those in math, with some

differences/extensions, partly due to limited range of symbols and partly due

to how hardware usually works:

* and / for multiplication and division; on integers division produces quotient

only ; to get remainder use %.

• An expression has a value, which is determined by evaluating it. Evaluation

may have side effects — e.g., printf("hello\n") is an expression,

with the side effect of “printing” and a value that’s usually ignored.

Slide 8

Assignment Statements Revisited

• Simplest programs are often basically a sequence of assignment statements

(plus some “statements” that are really just expressions, such as that

printf in the “hello world”program).

• Unless otherwise indicated, statements are executed in the order in which

they appear in the code. (Sequential-ness is important and sometimes trips

up beginners.)



CSCI 1312 August 31, 2018

Slide 9

Simple Output in C

• Use printf to display predefined text and values of variables.

• Syntax is that of “function call” (more later) with first parameter a “format

string” that may include “conversion specifications”, followed by zero or more

expressions, one for each conversion specification.

• When statement is executed, expressions are evaluated and the results

turned into something printable using those conversion specifications.

Slide 10

Simple Output in C — Conversion Specifications

• Conversion specifications say what kind of data is to be printed (integer,

floating-point, etc.) and how.

• For example, %d prints an integer in base 10, %x prints an integer in base 16.

Also options to print with a fixed width (so output lines up in columns), control

number of digits after the decimal point, etc.

• man 3 printf for all the details. (There are a lot.) (What’s that “3”?

There are several things called printf; the 3 says we want the C library

function.)



CSCI 1312 August 31, 2018

Slide 11

Simple Input in C

• Use scanf to get input. (Caveat: It has limitations and annoyances, but it’s

what almost all intro texts use and is simple. Doing a really great job of

interactive input is surprisingly(?) difficult, especially in C, so we’ll aim just to

do a reasonable job.)

• Syntax very similar to that of printf except that rather than expressions

you have pointers that say where to store value(s). More about pointers later;

in this context, name of variable preceded by &.

Slide 12

Simple Examples

• Recap from last time: Compile (and link) with gcc I recommend ALWAYS

ALWAYS compiling with optional flag -Wall so you get most optional

warnings — sometimes annoying, but often very helpful! Example

gcc -Wall hello.c)

Then execute with ./a.out.

(Actually there are some other flags you should probably use too. More about

that later.)

• (Simple example(s).)



CSCI 1312 August 31, 2018

Slide 13

Example — “Counting Change”

• Problem statement: Given a number of pennies, show how to represent it with

minimum number of coins (pennies, nickels, etc.).

• First think about how you’d do this yourself. Then turn it into code.

Slide 14

Minute Essay

• Any questions? How similar is all of this to something you’ve used before,

such as Matlab?


