
CSCI 1312 September 10, 2018

Slide 1

Administrivia

• Reminder: Homework 2 due Wednesday.

• First quiz next Monday. (More on next slide.) Topics include anything we

cover up through Friday (so, C programming as covered so far, material about

base 2 and how it’s used to represent integers in computers).

Slide 2

Quizzes

• About 10 minutes.

• “Open book / open notes”: access to textbook, anything on the course Web

site, your notes and graded or ungraded work, nothing else.

• Can use computer only to view allowed material (so, no use of gcc or

calculator).

• Meant to be not stressful and not something you need to study for, beyond a

quick review.

CSCI 1312 September 10, 2018

Slide 3

Minute Essay From Last Lecture

• Pretty much everyone got the point about different schemes for floating point

— more bits for the exponent means a larger range of values, while more bits

for significant figures means more precision.

Slide 4

C and Representing Numbers — Integers

• Computer hardware typically represents integers as a fixed number of binary

digits. Most hardware uses “two’s complement” idea to allow for representing

negative numbers.

• C, like many (but not all!) programming languages largely bases its notion of

integer data on this, but also has a notion of different types with different sizes

(short, int, long, long long). Note that unlike many more-recent

languages, C defines for each type a minimum range rather than a definite

size. (C99 does define some fixed-size types. Later maybe.)

Intent is to allow efficient implementation on a wide range of platforms, but

means some care must be taken if you want portability.

CSCI 1312 September 10, 2018

Slide 5

C and Representing Numbers — Integers, Continued

• Because data is fixed in size, “overflow” is possible. Some hardware supports

detecting that, but C doesn’t assume that’s possible, so no easy way to check.

Programmers should check that each variable is of a type big enough to hold

all anticipated values.

• (Why oh why . . . ? My guess is that it’s in keeping with the goals of “possible

to implement on many diverse platforms” and “efficient code”.)

Slide 6

C and Representing Numbers — Real Numbers

• Hardware also typically supports “floating-point” numbers, with a

representation based on a base-2 version of scientific notation. This allows

representing not only fractional quantities but also allows representing larger

numbers than would be possible with fixed-length integers. Note that only

fractions that can be written with a denominator that’s a power of two can be

represented exactly.

• Again C goes along with this and provides different “sizes” (float and

double).

CSCI 1312 September 10, 2018

Slide 7

Text Data

• Remember that computers represent everything using ones and zeros. How

do we then get text? well, we have to come up with some way of “encoding”

text characters as fixed-length sequences of ones and zeros — i.e., as

small(ish) numbers.

• (To be continued later in the semester.)

Slide 8

Conditional Execution

• So far all our programs have executed the same statements every time, just

maybe with different numbers.

• Often, though, we want to be able to do different things in different

circumstances — for example, print an error message and stop if the input

values don’t make sense (such as a negative number for the program to make

change).

• So, C (like most languages) provides some constructs for conditional

execution. Before we talk about them, we need . . .

CSCI 1312 September 10, 2018

Slide 9

Boolean Expressions

• A Boolean value is either true or false; a Boolean expression is something

that evaluates to true or false.

• We can make simple examples in C using familiar math comparison

operators. Examples:

– x > 10

– y <= 5

– x == y (Note the use of == and not =!)

Slide 10

Boolean Expressions, Continued

• Boolean algebra defines some operators on these values; the most important

for us are written in C as

– ! — “not”, true if the operand is false.

– && — “and”, true if both operands are true.

– || — “or”, true if either operand is true (or both are).

• Can use these to build up complex expressions. As with arithmetic

expressions, use parentheses when in doubt. Examples:

– (x >= 0) && (x <= 10)

– !(x == y) (though we could also just write x != y).

CSCI 1312 September 10, 2018

Slide 11

Conditional Execution in C — if/else

• To execute a statement if an expression evaluates to true, use if:

if (x > 0)

printf("greater than zero\n");

• To execute one statement if an expression is true, another if it’s false, use if

and else:

if (x > 0)

printf("greater than zero\n");

else

printf("not greater than zero\n");

Slide 12

if/else, Continued

• To execute a group (“block”) of statements rather than just a single statement,

use curly braces for grouping:

if (x > 0) {

printf("greater than zero\n");

printf("and that is good\n");

}

else {

printf("not greater than zero\n");

printf("and that is bad\n");

}

• What happens if you forget the braces? The program may still compile and

run, but it probably won’t do what you meant.

CSCI 1312 September 10, 2018

Slide 13

if/else, Continued

• Several styles for where to put the curly braces and how to indent. Which is

best? Opinions differ. Some people insist on One True Way; I say pick one

that’s readable (to humans) and stick with it.

• (Remember that you’re writing for “two audiences” — compiler and humans.)

• vim should help you with this — it has built-in indenting styles for many

programming languages. If indentation gets out of synch with code because

of editing, can reindent:

== to reindent current line.

gg=G to reindent whole file (gg to move to start of file, = to reindent, G to

continue to end).

Slide 14

Conditional Execution, Continued

• What if more than two conditions we want to check for? Could “nest”

if/else constructs, e.g.,

if (x < 0) {

printf("less than\n");

}

else {

if (x > 0) {

printf("greater than\n");

}

else {

printf("equal\n");

}

}

• But this gets ugly fairly quickly. So . . .

CSCI 1312 September 10, 2018

Slide 15

Conditional Execution, Continued

• Better:

if (x < 0) {

printf("less than\n");

}

else if (x > 0) {

printf("greater than\n");

}

else {

printf("equal\n");

}

• Can have as many cases as we need; can omit else if not needed.

Slide 16

Boolean Expressions in C

• Although there are only two Boolean values, C represents them as ints,

with 0 meaning false and anything else meaning true.

• One consequence: Integer expressions can be used in place of Boolean

expressions.

So for example

if (x == y)

and

if (x = y)

are both valid C, but they mean different things. (The second one assigns the

value of y to x and is considered true if the result is nonzero. Almost never

what you want! gcc will warn you, at least with -Wall.)

CSCI 1312 September 10, 2018

Slide 17

Simple I/O, Revisited

• We can now do simple error-checking that scanf did what we asked.

C-idiomatic way looks like this simple example:

if (scanf("%d", &x) == 1)

/* okay */

else

/* error */

• (More about what this means when we talk about functions, soon.)

Slide 18

Simple I/O, Revisited

• Doing a really good job with interactive input is surprisingly tricky — what

constitutes an error, how/whether to prompt user to try again.

• So for this class we’ll focus on some simple safety checks: if input should be

numeric it is, values make sense for the program (e.g., input to “count

change” program is not negative).

• For this class it’s usually best to just bail out on bad input, rather than retrying.

CSCI 1312 September 10, 2018

Slide 19

Example — Finding Roots of a Quadratic Equation

• As a rather math-y example, let’s write a program to compute and print the

roots of a quadratic equation

ax
2 + bx+ c = 0

• We’ll use the formula

−b±
√
b2 − 4ac

2a

and try to account for as many cases as we can . . . (To be continued.)

Slide 20

Minute Essay

• Have you previously used something that supports conditional execution

(Matlab?), and if so how does C’s version compare to it?

• I should have asked last time, but belatedly: How much of the material about

binary numbers was new to you and how much was review?

