
CSCI 1312 September 15, 2018

Slide 1

Administrivia

• Reminder: First quiz Monday.

As noted previously, you’ll have access to the textbook, your notes (paper or

electronic), and the course Web site, but the only allowed computer use is to

access these (so no typing in code and trying it). Intended to take no more

than 10 minutes.

Likely questions include “what does this C program print?”, “write some C

code to do the following”, and questions about the material on binary

numbers.

Slide 2

Minute Essay From Last Lecture

• Pretty much everyone got it right (yay!), except for one person who I think

forgot what % means in C.



CSCI 1312 September 15, 2018

Slide 3

Homework 2 Essays

• A few people commented that it was good to start writing code — interesting,

helpful, even fun.

• The comment that stood out most was about how to divide 5 by 9 and get the

desired result. (That was a key take-away message for the first problem.)

• A few people mentioned that they were able to adapt examples from class.

Often that’s my intent — that you use them as starting points or guides.

Slide 4

Functions and Problem Decomposition

• So far all our programs have been one big chunk of code. This is okay for

simple programs, but quickly becomes difficult to understand as problems get

bigger.

• Further, some things we don’t want to, or really can’t, write ourselves, such as

the code for input/output.

• So C, like many/most other programming languages, gives you a way of

decomposing problems into subproblems. C calls them functions.

C functions are similar to functions in math, except that they can have side

effects (similar to how evaluation of expressions can have side effects).

Using this feature to good effect is something of an art, but experience helps.



CSCI 1312 September 15, 2018

Slide 5

Functions in C, Continued

• Every function has

– A name (where rules for names are the same as those for variables).

– Zero or more inputs (called parameters).

– A return type (void to indicate that the function doesn’t return anything).

– Some code to be executed when the function is called.

• When you call (use) a function, you

– Supply values for inputs (pass in values for parameters).

– Optionally, use the value returned by the function. The function call is an

expression, and its value is the value returned by the function.

Slide 6

Defining and Using Functions

• Simple example of defining and using a function to add two integers:

int add(int a, int b) {

return a + b;

}

int main(void) {

int result = add(1, 2);

printf("%d\n", result);

return 0;

}

• add has two parameters called a and b, which are basically variables local

to the function. When we call add from main, values 1 and 2 are copied

into these variables. The code in add executes until it reaches a return.

At that point, we go back to the calling function, and the value of the function

call is whatever is after the keyword return.



CSCI 1312 September 15, 2018

Slide 7

Functions in C — Declaration Versus Definition

• Many languages let you put function definitions in any order you want, and

even split them up among files.

• But some of this requires the compiler to be somewhat smarter than C

compilers are required to be. In C, functions must either be defined or

declared before being used.

• Function declarations give function name, number and types of parameters,

and return type. Syntax is just like that for function definitions, except no

parameter names needed, and body is replaced with a semicolon.

Slide 8

Functions in C — Declaration Versus Definition,

Continued

• For your own functions, you can either define them before using them, or

define them in whatever order you like and put declarations at the top.

• For library functions? declarations are part of what’s supplied by #include

directives. (“Aha, so that’s what that is”?)



CSCI 1312 September 15, 2018

Slide 9

The main Function, Revisited

• Every C program you/we have written so far includes a definition of a function

called main. All complete C programs must have such a function.

• main is defined in your code:

– It has no parameters. (Actually, it can — there’s an alternative definition

that allows it to accept command-line arguments, similar to the ones that

follow commands such as gcc, ls, etc. Later!)

– It returns an integer value.

Slide 10

The main Function, Continued

• main is called by some type of environment (the command shell for us,

when you type ./a.out after compiling). It gives your code the optional

parameters (more about this later) and receives the value you return. Return

value can be used to indicate success/failure (useful for shells that

themselves support conditional execution).

• Almost all of this program, and other examples, should now more or less

make sense! (Exceptions are representation of character strings, & syntax for

parameters. Soon!)



CSCI 1312 September 15, 2018

Slide 11

C Library Functions

• Standard C comes with a number of library functions to do things many

programs want to do.

• Examples we’ve seen so far: scanf, printf.

• UNIX/Linux systems normally have man pages for these functions, describing

parameters and return values in full detail (hence, not always easy reading).

(Tip: man printf gives the man page for a command rather than the C

function. Use man 3 printf to get what we want.)

(Tip: When reading a man page, h will bring up a summary of what keys do

what — page up/down, search, quit, etc.)

Slide 12

Defining and Using Functions — Example

• As a somewhat contrived example, we could rearrange the “solve a quadratic

equation” example from previous class.

• By putting the code to solve the equation and print results in a function, we

can also easily have it print some examples/tests. Maybe do this before

prompting for input?



CSCI 1312 September 15, 2018

Slide 13

Minute Essay

• Any questions?


