
CSCI 1312 September 26, 2018

Slide 1

Administrivia

• Reminder: Homework 4 due Friday.

• Quiz 3 next Wednesday. Midterm the following week(!).

• Quiz 2 solution online.

Slide 2

Homework 3 Essays

• Not much really stood out.

• Several people found this assignment more difficult than the previous one. No

surprise! (But most people did well — good!)

• A few people found the problems interesting to solve. I try!



CSCI 1312 September 26, 2018

Slide 3

Repetition Via Loops

• Recursion provides one way to repeat something. Often not efficient (every

call to a function requires space for local variables, and at some point you can

run out of room), nor is it always convenient (writing a function every time you

want to repeat something).

• Hence C, like most procedural languages, offers constructs called loops. All

have four basic elements (sometimes implicit).

Slide 4

Loop Elements

• Initializer — something that sets initial values for variables involved in the

repetition (iteration).

• Condition — something that determines whether repetition continues. Can be

tested at the start of each iteration (pre-test loop) or at the end (post-test

loop).

• Body — the code to repeat.

• Iterator — something that moves on to the next iteration.



CSCI 1312 September 26, 2018

Slide 5

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and

iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

while (n <= 10) { /* condition */

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

Slide 6

for Loops

• Probably the most common type of loop. Particularly useful for anything

involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

int n;

for (n = 1; n <= 10; ++n) {

printf("%d\n", n);

}

• Initializer happens once (at start); condition is evaluated at the start of each

iteration; iterator is executed at the end of each iteration.



CSCI 1312 September 26, 2018

Slide 7

do while Loops

• Very similar to while loop, except that test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

do {

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

} while (n <= 10); /* condition */

Slide 8

Loops — Simple Examples

• We could do a loop version of the program to sum integers from stdin, as an

example of using a while loop.

• We could do loop versions of the factorial and Fibonacci programs, as

examples of using for loops.



CSCI 1312 September 26, 2018

Slide 9

Minute Essay

• Have you seen loops in another context? (Matlab, etc.)?


