
CSCI 1312 September 28, 2018

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 on the Web; due next Friday.

• Sample solution for Homework 3 posted.

• As I hope I’ve mentioned previously, but to say it maybe-again: Most code

I/we write in class will be available via the course Web site “sample programs”

page. So no need to worry too much about keeping up as I type in code.

Also note that these are tidied-up versions, with more comments than I take

time to do in class — I don’t take time in class to write many comments or to

make error messages helpful, but you should in your homeworks, and the

Web-site versions are examples of what’s desired.

Slide 2

Minute Essay From Last Lecture

• Everyone had seen loops in some other context.



CSCI 1312 September 28, 2018

Slide 3

Loops — Recap/Review

• Loops, like recursion, are a way to repeat some operation. Useful in applying

the same operation to all elements of some collection or in repeating an

operation until some condition is met.

• What all these ways of repetition have in common:

– A starting point (initial condition, first element of a collection).

– The operation to repeat.

– How to move from one iteration to the next.

– When to stop (though the syntax often is such that what you actually say is

when not to stop).

Slide 4

Loops — Recap/Review, Continued

• Last time we looked at basic syntax for for, while, and do while

loops.

• When to use which one? “it depends”, and sometimes a matter of style, but in

general:

• If you know how many times you want to repeat something, a for loop is

probably more idiomatic.

• If you don’t, a while or do while is probably better. while loops are

more common, but do while can be a good choice.



CSCI 1312 September 28, 2018

Slide 5

Loops Versus Recursion

• As noted in class, recursive functions can be simple to write but potentially

inefficient (though in some cases a sufficiently smart compiler can reduce or

eliminate the inefficiency — look up “tail recursion” to find out more).

• For other problems, a loop is simpler to write — loop versions of some of the

in-class examples of recursion are as simple or simpler. So it may seem that

loops are better.

• But there problems for which recursive solutions are much simpler to write

and get right, while non-recursive solutions are decidedly not simple —

anything involving “trees”, plus at least two widely-used algorithms for

“sorting” (putting things in order).

Slide 6

Loops — More Examples

• First note that we could even have a loop within a loop (“nested loops”). Silly

example — printing a rectangle of x’s.

• Next let’s modify the “sum of integers” program to compute an average. Both

programs (the original and this variation) are examples of what one might call

a “running total” pattern.

• As an example of something more complicated, we could try writing a

program that gets an int from standard input without using scanf . . .



CSCI 1312 September 28, 2018

Slide 7

Numerical Computation

• A big use of computers is in solving (exactly or approximately) mathematical

problems — “numerical computation” or “numerical analysis”. Matlab is one

tool for this, and/or you can write your own programs in a general-purpose

programming language. Often (maybe always?) these involve various forms

of repetition.

• Example(s) next time . . .

Slide 8

Minute Essay

• Can you think of a problem that interests you that seems like it could be

solved with some type of loop? (What?)


