
CSCI 1312 October 5, 2018

Slide 1

Administrivia

• Reminder: Homework 5 due today.

Slide 2

Minute Essay From Last Lecture

• No one’s using make. Some people are using gcc -Wall consistently

and finding it useful. Others sometimes forget or use it only if code doesn’t

work.

• Since with loops it’s often useful to also compile with -std=c99, it may be

time to switch to using make . . .



CSCI 1312 October 5, 2018

Slide 3

make Revisited

• make is an old-but-still-useful tool for building programs. It can do a lot of

complicated things, but it can also be used just to make it easier to always

compile with a selected bunch of flags. To do this:

• Put a copy of Makefile from the “sample programs” page in the directory

where you compile programs.

• To compile mypgm.c, type make mypgm. make should use gcc to

compile with a bunch of flags. (If it doesn’t, you’ve done something wrong.

Ask.)

• The result is called not a.out but mypgm. Run it by typing ./mypgm.

Slide 4

vim Tips

• You may have discovered already that if you don’t know/remember many of

the keyboard shortcuts (and vim is pretty much all keyboard shortcuts) it’s

painful to use vim. I like text-based editors for this class because they’re

easy to use remotely. There are others that may be easier to get started with,

but . . .

• I think vim is a good editor for writing code: It does syntax highlighting of

code in any language it “knows about” as well as automatic indentation. (Tidy

up indentation by typing == on a line.) It also shows matching

parentheses/braces, and if you put the cursor on one of those and press % it

takes you to the match — or indicates there isn’t one. Helpful!

• If you have trouble remembering, try a “cheat sheet” of commands you want

to remember.



CSCI 1312 October 5, 2018

Slide 5

vim Tips, Continued

• Short way to cut/copy/paste: yy (“yank”) to copy a line. dd to delete a line.

Both go into a buffer you can then insert with p or P. Precede the yy or dd

with a number to get multiple lines. Or . . .

• You will probably like “visual mode”: Put the cursor at the start of text to

highlight and press v. Move the cursor to the end and then type y to copy or

d to delete, and then use P to (re)insert.

• . repeats the most recent command (e.g., dd).

• You can search for text with /. Repeat search with n. Use cw to change a

“word”. Combine with . to do a quick repeated search-and-replace.

Slide 6

“Random” Numbers Revisited

• Many situations in computer science where it’s useful to work with a

sequence of “random” numbers.

• Examples include simulating physical systems, “Monte Carlo” algorithms. An

example is a program to estimate π by simulating throwing darts into a board

containing a quarter circle. (Count the number inside the circle and compute

the ratio of that to the total number.)

• Often what we want is not something that’s truly unpredictable but something

that looks that way and can be reproduced — i.e., we want a “pseudo-random

number generator”.



CSCI 1312 October 5, 2018

Slide 7

Pseudo-Random Number Generators in C

• C library includes functions srand(), rand(). srand() uses a “seed”

to initialize some behind-the-scenes variables, after which you call rand()

repeatedly to generate a sequence of “random” numbers. If you do this more

than once with the same seed you get the same sequence; using different

values of the seed gives different sequences.

• (Example — Monte Carlo method for estimating π.)

Slide 8

Character Data

• As mentioned previously, in C we can represent characters as type char.

• Simplest way to input/output a single character is with getchar and

putchar. Note that getchar returns an int; this is so there can be a

“special” value EOF for “end of file”. (For input from a terminal, signal with

something system-dependent, control-D on Linux machines.)

• Functions in ctype.h classify characters as alphabetic, digits, etc.

Functions toupper() and tolower() do what their names suggest.



CSCI 1312 October 5, 2018

Slide 9

Loops — Another Example

• We could also write some programs that do things with character input.

(When we know about files — next topic — this may get more interesting.)

• One example, interesting from a programming perspective, is writing

something that “detabifies” input — replaces tab characters with the right

number of spaces so that things line up at “tab stops”.

• As a warm-up, we could write something that just takes input from the user,

as many lines as entered, and echoes it. (How do we know when to stop?

signal “end of file” — control-D on Linux/UNIX.)

Slide 10

Minute Essay

• None — quiz.


