
CSCI 1312 October 22, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due Wednesday

• Next quiz a week from today (not this Friday).

• Completed code for “expand tabs” program posted on “sample programs”

page.

Slide 2

Minute Essay From Last Lecture

• For plotting people mentioned Engineering Equation Solver, Matlab, and

Excel. No clear consensus. “Hm!”?

• About the midterm, many people thought it was more or less what they

expected, though some said they did worse than they thought. It is hard to

write code without being able to type it in and test it, but — eh.



CSCI 1312 October 22, 2018

Slide 3

Why Arrays?

• Suppose you wanted to write a program to count how many times each letter

occurs in the program’s input. What would you do? Is there an obvious way to

solve this with what we’ve discussed so far?

Slide 4

Why Arrays?, Continued

• You could have a variable for how many A’s, one for how many B’s, etc., and a

huge switch construct. But how ugly . . .

• What seems to be needed is something similar to subscripted variables in

math — an array.

• Other uses abound — e.g., if working with large amounts of input, sometimes

you can process elements as you read them (e.g., our program to compute an

integer sum), but sometimes it’s necessary or at least convenient to have

them all in memory at once.



CSCI 1312 October 22, 2018

Slide 5

Arrays

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many elements of the

same type (int, float, etc.) and give a common name to all. You can

then reference an individual element via its index (similar to subscripts in

math).

Slide 6

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

old C, it had to be a constant. In newer C, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)



CSCI 1312 October 22, 2018

Slide 7

Example — Variance

• As an example of a calculation where it’s necessary (or at least convenient) to

have all input values in memory at once, consider computing variance of

inputs, where variance of a0 · · · an−1 is defined as the average of

(ai − avg)2 (avg is the average of the ai’s).

• Unless we can be clever somehow, we can’t start computing this sum until we

have the average, and computing that requires us to read all the inputs, but

then we need to read them again, which might not be possible, so store

them . . .

Slide 8

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements

with indices 0 through n− 1. What happens if you reference element -1? n?

2n?

• Well, the compiler won’t complain. (How would it know to?) And at runtime,

the computer will happily compute a memory address based on the starting

point of the array and the index. If the index is “in range”, all is well. If it’s not

(i.e., it’s “out of bounds) . . .



CSCI 1312 October 22, 2018

Slide 9

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable.” Maybe it’s outside the memory your program can

access, in which case you probably get the infamous “Segmentation fault”

error message.

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. (This is the essence of the buffer overflows you may hear

mentioned in connection with security problems.)

• What to do? Be careful. (Probably worth noting here that many more-recent

languages, for example Java, Scala, and Python, protect you from such errors

by “throwing an exception”, which by default crashes your program, but with

information about what went wrong.)

Slide 10

Arrays — Summary

• Arrays are very useful and extend the range of what we can (easily) do.

• However, in C they open up new sources of potential error, and because

they’re fixed in size (when you create them), I say avoid their use when you

easily can.



CSCI 1312 October 22, 2018

Slide 11

Minute Essay

• Have you seen arrays before (maybe in Matlab)?

• Either way — can you think of uses?


