
CSCI 1312 October 26, 2018

Slide 1

Administrivia

• Homework 7 due date extended to Friday.

• Quiz 4 moved to next Friday.

Slide 2

Sorting and Searching

• Traditional topics in CS1 courses. Arguably not of first importance to people

more interested in using computers as tools, but still interesting . . . :

• Both are good examples of problems that can be solved in different ways.

• Both are good examples for introducing the idea of “order of magnitude” for

algorithms.

• (But if you actually need to do one of these operations, look first for a library

function!)



CSCI 1312 October 26, 2018

Slide 3

Sorting — The Problem and Some Solutions

• Problem: Given an array (or list) of elements for which there is a sensible

“less than” operator, put them in order.

• Simple solutions include bubble sort, selection sort, insertion sort. Easy to

program but not “fast” (more shortly).

Textbook has good discussions.

(Examples of doing bubble sort and selection sort.)

• More-complex but “faster” solutions exist, and two of the best-known use

recursion(!). More about them later.

Slide 4

Searching — The Problem and Some Solutions

• Problem: Given an array (or list) and an element, search the array for the

element.

• Simplest solution is sequential search. Easy to program and works for any

array but not “fast”.

• Slightly more-complex solution is binary search. “Faster” but requires array to

be in order.



CSCI 1312 October 26, 2018

Slide 5

Order of Magnitude of Algorithms

• Conventional wisdom (among computer scientists) is to write programs in a

way that humans can understand, and let the compiler turn them into

something that will run fast.

• One exception is “order of magnitude” of algorithm, however.

• Key idea is to think about how execution time (or some other measure, such

as memory requirements) scales with “problem size”.

• Roughly analogous to order of magnitude of numbers — provide a way of

grouping into classes in which all members of one class are sort of “the

same” but members of different classes are not.

Slide 6

Order of Magnitude of Algorithms, Continued

• Typically written using “big-O” notation (e.g., O(N), O(N2), etc.). Formal

definition possible, but informally, O(f(N)) means that execution time (or

whatever) for problem size N scales as f(N). Examples:

• f(N) = N , f(N) = 10N , and f(N) = N + 1000 are all O(N)

(“linear”).

• f(N) = N2, f(N) = 2N2, and f(N) = N2 + 2N + 1 are all O(N2).

• f(N) = 2N and f(N) = 2N +N are both O(2N ) (“exponential”).

• (Compare using gnuplot.)



CSCI 1312 October 26, 2018

Slide 7

Order of Magnitude of Algorithms, Continued

• A key idea: For large enough problem sizes, algorithms with smaller orders of

magnitude are faster, though this may not be true for small problem sizes.

• Another key idea: Some orders of magnitude (e.g., O(2N )) are sufficiently

“big” that solving problems of any non-trivial size is simply not feasible, so

“wait until computers get faster” is probably not a good strategy. “Hm!”?

• Can help rule out algorithms that would not be practical/feasible for large

problems.

A famous(?) example — “traveling salesperson problem”, for which all known

algorithms require considering, for N cities, all possible permutations, making

them O(N !). Not reasonable! (Worth noting that there apparently are

practical approximations. Still!)

Slide 8

Order of Magnitude of Algorithms, Continued

• As an example, look at bubble sort and selection sort.

• For both, “problem size” is the number of elements to sort, and a rough

measure of how execution time scales with problem size is based on how

many comparisons are needed, in the worst case.

• Again for both, total number of comparisons is N(N − 1)/2, making them

“O(N2)”.

• As another example, look at sequential search and binary search. The first is

O(N), but the second is . . . What? (O(logN))



CSCI 1312 October 26, 2018

Slide 9

Minute Essay

• None really — just sign in, unless questions?


