CSCI 1312 October 26, 2018

Administrivia

e Homework 7 due date extended to Friday.

e Quiz 4 moved to next Friday.

Slide 1
Sorting and Searching
e Traditional topics in CS1 courses. Arguably not of first importance to people
more interested in using computers as tools, but still interesting . ... :
e Both are good examples of problems that can be solved in different ways.
e Both are good examples for introducing the idea of “order of magnitude” for
Slide 2

algorithms.

e (But if you actually need to do one of these operations, look first for a library

function!)
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Sorting — The Problem and Some Solutions

e Problem: Given an array (or list) of elements for which there is a sensible
“less than” operator, put them in order.

e Simple solutions include bubble sort, selection sort, insertion sort. Easy to
program but not “fast” (more shortly).

Slide 3 Textbook has good discussions.

(Examples of doing bubble sort and selection sort.)

o More-complex but “faster” solutions exist, and two of the best-known use
recursion(!). More about them later.

Searching — The Problem and Some Solutions

e Problem: Given an array (or list) and an element, search the array for the
element.

e Simplest solution is sequential search. Easy to program and works for any
array but not “fast”.

Slide 4 e Slightly more-complex solution is binary search. “Faster” but requires array to
be in order.
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Order of Magnitude of Algorithms

Conventional wisdom (among computer scientists) is to write programs in a
way that humans can understand, and let the compiler turn them into
something that will run fast.

e One exception is “order of magnitude” of algorithm, however.
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Key idea is to think about how execution time (or some other measure, such

as memory requirements) scales with “problem size”.

Roughly analogous to order of magnitude of numbers — provide a way of
grouping into classes in which all members of one class are sort of “the
same” but members of different classes are not.

4 Order of Magnitude of Algorithms, Continued

e Typically written using “big-O” notation (e.g., O(N), O(N?), etc.). Formal
definition possible, but informally, O(f(IN')) means that execution time (or
whatever) for problem size N scales as f(N) Examples:

e f(N)=N, f(N)=10N,and f(N) = N + 1000 are all O(N)

Slide 6 (“linear”).

o f(N)= N2 f(N)=2N2%and f(N) = N2 + 2N + lareall O(N?).
o f(N)=2"and f(N) = 2" + N are both O(2") (“exponential’).

e (Compare using gnuplot.)
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Order of Magnitude of Algorithms, Continued

e A key idea: For large enough problem sizes, algorithms with smaller orders of
magnitude are faster, though this may not be true for small problem sizes.

e Another key idea: Some orders of magnitude (e.g., O(ZN)) are sufficiently
“big” that solving problems of any non-trivial size is simply not feasible, so
Slide 7 “wait until computers get faster” is probably not a good strategy. “Hm!”?

e Can help rule out algorithms that would not be practical/feasible for large
problems.
A famous(?) example — “traveling salesperson problem”, for which all known
algorithms require considering, for N cities, all possible permutations, making
them O(NN'!). Not reasonable! (Worth noting that there apparently are
practical approximations. Still!)

4 Order of Magnitude of Algorithms, Continued

e As an example, look at bubble sort and selection sort.

e For both, “problem size” is the number of elements to sort, and a rough
measure of how execution time scales with problem size is based on how

many comparisons are needed, in the worst case.

Slide 8 e Again for both, total number of comparisons is NV (N — 1) /2, making them
“O(N?)".

e As another example, look at sequential search and binary search. The first is
O(N), but the second is ... What? (O(log N))
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e None really — just sign in, unless questions?
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