CSCI 1312 October 26, 2018

Administrivia

e Homework 7 due date extended to Friday.

e Quiz 4 moved to next Friday.

Slide 1
Sorting and Searching
e Traditional topics in CS1 courses. Arguably not of first importance to people
more interested in using computers as tools, but still interesting . ... :
e Both are good examples of problems that can be solved in different ways.
e Both are good examples for introducing the idea of “order of magnitude” for
Slide 2

algorithms.

e (But if you actually need to do one of these operations, look first for a library

function!)




CSCI 1312 October 26, 2018

Sorting — The Problem and Some Solutions

e Problem: Given an array (or list) of elements for which there is a sensible
“less than” operator, put them in order.

e Simple solutions include bubble sort, selection sort, insertion sort. Easy to
program but not “fast” (more shortly).

Slide 3 Textbook has good discussions.

(Examples of doing bubble sort and selection sort.)

o More-complex but “faster” solutions exist, and two of the best-known use
recursion(!). More about them later.

Searching — The Problem and Some Solutions

e Problem: Given an array (or list) and an element, search the array for the
element.

e Simplest solution is sequential search. Easy to program and works for any
array but not “fast”.

Slide 4 e Slightly more-complex solution is binary search. “Faster” but requires array to
be in order.




CSCI 1312 October 26, 2018

Order of Magnitude of Algorithms

Conventional wisdom (among computer scientists) is to write programs in a
way that humans can understand, and let the compiler turn them into
something that will run fast.

e One exception is “order of magnitude” of algorithm, however.

Slide 5

Key idea is to think about how execution time (or some other measure, such

as memory requirements) scales with “problem size”.

Roughly analogous to order of magnitude of numbers — provide a way of
grouping into classes in which all members of one class are sort of “the
same” but members of different classes are not.

4 Order of Magnitude of Algorithms, Continued

e Typically written using “big-O” notation (e.g., O(N), O(N?), etc.). Formal
definition possible, but informally, O(f(IN')) means that execution time (or
whatever) for problem size N scales as f(N) Examples:

e f(N)=N, f(N)=10N,and f(N) = N + 1000 are all O(N)

Slide 6 (“linear”).

o f(N)= N2 f(N)=2N2%and f(N) = N2 + 2N + lareall O(N?).
o f(N)=2"and f(N) = 2" + N are both O(2") (“exponential’).

e (Compare using gnuplot.)




CSCI 1312 October 26, 2018

Order of Magnitude of Algorithms, Continued

e A key idea: For large enough problem sizes, algorithms with smaller orders of
magnitude are faster, though this may not be true for small problem sizes.

e Another key idea: Some orders of magnitude (e.g., O(ZN)) are sufficiently
“big” that solving problems of any non-trivial size is simply not feasible, so
Slide 7 “wait until computers get faster” is probably not a good strategy. “Hm!”?

e Can help rule out algorithms that would not be practical/feasible for large
problems.
A famous(?) example — “traveling salesperson problem”, for which all known
algorithms require considering, for N cities, all possible permutations, making
them O(NN'!). Not reasonable! (Worth noting that there apparently are
practical approximations. Still!)

4 Order of Magnitude of Algorithms, Continued

e As an example, look at bubble sort and selection sort.

e For both, “problem size” is the number of elements to sort, and a rough
measure of how execution time scales with problem size is based on how

many comparisons are needed, in the worst case.

Slide 8 e Again for both, total number of comparisons is NV (N — 1) /2, making them
“O(N?)".

e As another example, look at sequential search and binary search. The first is
O(N), but the second is ... What? (O(log N))




CSCI 1312 October 26, 2018

e None really — just sign in, unless questions?

Slide 9




