
CSCI 1312 October 29, 2018

Slide 1

Administrivia

• Try to at least look at Homework 7 for next time.

Slide 2

Multi-Dimensional Arrays in C — Recap/Review

• Multi-dimensional arrays can be quite useful, and many languages support

them pretty well. C, alas — not so much.

• For small arrays, VLAs work well.

• For large arrays, other options are better. More later.

CSCI 1312 October 29, 2018

Slide 3

Multi-Dimensional Arrays, Example — ASCII Art

• We could write a simple “ASCII art” program that “draws” pictures using

characters only, with:

– a two-dimensional array of char as the “canvas”, and

– a simple text-menu-driven interface to print, set blocks, clear.

(Look at pre-written code.)

Slide 4

Just For Fun — Extreme ASCII Art

• Try telnet towel.blinkenlights.nl. Sometimes site is

inaccessible, but when it works . . .

Control-] then Enter, then q, to exit.

• (This has been around for a long time.)

CSCI 1312 October 29, 2018

Slide 5

Pointers Revisited

• Every time you call scanf, you pass it at least one parameter of the form

&x. What does that mean? Also, when you look at man pages for some

functions, they show function declarations with parameters of the form type *.

What does that mean?

• To explain, we need one more kind of variable — pointers. A pointer, as its

name suggests, points to something — namely, a location in memory.

Typically a pointer “points to” a variable.

Slide 6

Pointers in C

• Many programming languages provide something like pointers. Unlike some

more-recent languages, C allows you to have both pointer variables and

non-pointer variables.

• To a first approximation, C pointers are just memory addresses — i.e.,

numbers — but they are declared to point to variables (or data) of a particular

type. Examples:

int * pointer to int;

double * pointer to double;

• Can display value of pointer using printf with %p. Sometimes interesting

in exploring how variables are laid out in memory

(implementation-dependent).

CSCI 1312 October 29, 2018

Slide 7

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• Special value NULL means the pointer “doesn’t point to anything”.

Dereferencing a null pointer usually produces an error, as does deferencing

an uninitialized pointer variable.

Slide 8

Pass By Reference, Sort Of — Review(?)

• Functions can only explicitly return a single value — a significant limitation.

Pointers provide a way to get around that: By passing a pointer to something,

rather than the thing itself, can in effect have a function return multiple things.

• To make this work, declare the function’s parameters as pointers, and pass

addresses of variables rather than variables. (This is how scanf does what

it does, and why you need the &.)

• (The “sort of” in the slide title is because this is not true pass by reference as

in, e.g., C++, but the effect is the same.)

• (We did an example of this a while back — the final version of the program to

find roots of a quadratic equation.)

CSCI 1312 October 29, 2018

Slide 9

Minute Essay

• Questions? about arrays, pointers, . . . ? otherwise sign in.

