
CSCI 1312 October 31, 2018

Slide 1

Administrivia

• For Homework 6, as of my writing this only two people had turned in complete

versions. Some of the others said they’d send improved versions soon; others

didn’t. I just sent e-mail to the latter group asking about intentions. I don’t

mind waiting for improved versions; I just want to know whether to grade what

you turned in or wait.

• Reminder: Homework 7 due Friday.

• Reminder: Quiz 4 Friday. Likely topic is arrays.

Slide 2

Homework 7

• (Review problems / answer questions.)



CSCI 1312 October 31, 2018

Slide 3

Pointers — Recap/Review

• Pointers “point to” data of a particular type. Declare with type and *.

• Related operators include & (“address of”) and * (dereference — find what

pointer points to).

• Useful if we need for a function to modify one of its parameters. Many other

uses too, which may become apparent as we continue.

Slide 4

Character Strings in C — Preview

• We’ll talk more about text data soon, but for now a summary version:

• Text strings are represented as arrays of characters. Can vary in length; end

of string indicated by a special character.

• Text in double quotes (e.g., in a call to printf) defines a string constant —

so somewhere in memory there is an array of those characters.



CSCI 1312 October 31, 2018

Slide 5

Pointers and Arrays in C

• C treats pointers and arrays as interchangeable in most respects. (This is why

it works that many functions whose parameters are supposed to be strings —

arrays of characters — declare them as pointers. Look again at man page for

printf, e.g.)

• About the only difference is behavior of sizeof operator — for

locally-declared array you get size in bytes, for array parameter or pointer you

get pointer size.

Slide 6

Pointer Arithmetic in C

• C also permits doing some arithmetic operations on pointers, though only the

ones that are “sensible”.

• Adding an integer n to a pointer that points to type advances it n times the

size of type. Subtracting an integer from a pointer works similarly. (Strictly

speaking, though, you should only do this within an array.)

• Subtracting one pointer from another gives an integer result. (This can be

particularly useful in working with strings.)

• Comparing pointers with relational operators works, though strictly speaking

you should probably only use less-than and greater-than operators on

pointers into the same array.



CSCI 1312 October 31, 2018

Slide 7

Pointer Arithmetic in C, Continued

• Example: If a is an array of ints, a[2] and *(a+2) are equivalent.

• So we could write loops over arrays using pointers. Once upon a time that

was sometimes more efficient. With current compilers, probably not so, so

use whatever is most readable.

• (Example.)

Slide 8

Dynamic Memory and C

• With the old C standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays help with that, but don’t solve all related problems:

In most implementations, space is obtained for them on “the stack”, an area of

memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).



CSCI 1312 October 31, 2018

Slide 9

Dynamic Memory and C

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(How this helps — most implementations differentiate between two areas of

memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• Dynamic memory allocation also needed to build “ragged” arrays (arrays in

which rows are of different sizes) and “linked” data structures (later).

Slide 10

Dynamic Memory and C, Continued

• To request memory, use malloc.

• To return it to the system, use free. (For short simple programs you can

probably get away with skipping free since the operating system will

probably clean up after you, but for longer and more complicated programs,

you should clean up when you can, or eventually you may run out of memory.)



CSCI 1312 October 31, 2018

Slide 11

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *

20);

or better:

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

and then

free(nums);

free(some text);

• Book recommends “casting” value returned by malloc. Other references

recommend the opposite! But you should check the value — if NULL, system

Slide 12

was not able to get that much memory.

• Example — program to generate and sort “random” numbers, two ways.



CSCI 1312 October 31, 2018

Slide 13

Minute Essay

• Many people seem to be falling behind with the homework. If that’s you, can

you say what’s going wrong? Are you not getting help, is the help not

enough, . . . ?


