
CSCI 1312 November 5, 2018

Slide 1

Administrivia

• Quiz 5 next Monday.

Slide 2

Text Data in C — Recap/Review

• Single characters represented by type char. Character constants use single

quotes. Can include “escape characters”, e.g., ’\n’.

• Strings represented as arrays of char, of whatever size, with a character

’\0’ marking the end. “String” constants use double quotes. (“Aha!”? so

now the first parameter to printf and scanf makes almost complete

sense? except for const? next slide.)

CSCI 1312 November 5, 2018

Slide 3

Sidebar: const in C

• You’ll notice that some parameters of library functions are declared const?

In C, this keyword means “does not change”.

• For parameters, means the function doesn’t change it. (I haven’t been using it

in examples, but arguably I should.)

• For variables, means the value once assigned doesn’t change. This might be

a nicer alternative to #define for giving constant values a name.

Slide 4

Text Strings in C — Recap/Review

• Surprisingly(?), getting string input safely is tricky. I recommend fgets(),

when you can’t just supply the string as a command-line argument.

• Perhaps surprisingly, normal(?) assignment and relational operators don’t for

the most part work, but there are library functions:

strcpy to copy (use instead of assignment).

strcmp to compare (use instead of relational operators).

Many other library functions . . .

CSCI 1312 November 5, 2018

Slide 5

Text Strings in C — Cautions

• Significant problem in working with strings — no natural maximum size, so

must decide how big to make the array of characters used to hold one — and

then be sure you don’t try to put in too many characters.

• Some library functions let you say how big the array is; some don’t. Always be

as careful as you can when working with strings; trying to store a string in an

array not big enough is a source of “buffer overflows”, which can lead to

program crashes and more subtle problems, including security risks.

Slide 6

Working With Text Strings in C — Recap/Review

• Once you have a string, what can you do with it? can process it either as an

array (using indices) or using pointers. Pointer arithmetic can be a help.

• (Another example.)

CSCI 1312 November 5, 2018

Slide 7

Command-Line Arguments in C — Review

• In C, command-line arguments are passed to main as an array of text

strings. So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments — represented as pointers to their first elements(!).

• Reference individual arguments via argv[0], argv[1], etc.

• This should make more sense now that we know about arrays, and (more)

about pointers? and we can write a general “echo arguments” program.

Slide 8

Converting Text Strings to Numeric Types

• You know about scanf (and fscanf) for converting text input to numeric

types. But what if you have a text string (e.g., a command-line argument) and

want to extract from it a command-line argument? You could use sscanf,

or . . .

• Functions strtol and strtod can help. (atoi and atof can also be

used but do not provide any kind of error checking.)

Usage example:

char *endptr;

long n = strtol(argv[1], &endptr, 10);

if (*endptr != ’\0’) /* error */

• (Example — program to echo command-line arguments, revisited.)

CSCI 1312 November 5, 2018

Slide 9

Minute Essay

• None — quiz.

