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Administrivia

• Quiz 5 next Monday.
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Text Data in C — Recap/Review

• Single characters represented by type char. Character constants use single

quotes. Can include “escape characters”, e.g., ’\n’.

• Strings represented as arrays of char, of whatever size, with a character

’\0’ marking the end. “String” constants use double quotes. (“Aha!”? so

now the first parameter to printf and scanf makes almost complete

sense? except for const? next slide.)
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Sidebar: const in C

• You’ll notice that some parameters of library functions are declared const?

In C, this keyword means “does not change”.

• For parameters, means the function doesn’t change it. (I haven’t been using it

in examples, but arguably I should.)

• For variables, means the value once assigned doesn’t change. This might be

a nicer alternative to #define for giving constant values a name.
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Text Strings in C — Recap/Review

• Surprisingly(?), getting string input safely is tricky. I recommend fgets(),

when you can’t just supply the string as a command-line argument.

• Perhaps surprisingly, normal(?) assignment and relational operators don’t for

the most part work, but there are library functions:

strcpy to copy (use instead of assignment).

strcmp to compare (use instead of relational operators).

Many other library functions . . .
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Text Strings in C — Cautions

• Significant problem in working with strings — no natural maximum size, so

must decide how big to make the array of characters used to hold one — and

then be sure you don’t try to put in too many characters.

• Some library functions let you say how big the array is; some don’t. Always be

as careful as you can when working with strings; trying to store a string in an

array not big enough is a source of “buffer overflows”, which can lead to

program crashes and more subtle problems, including security risks.
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Working With Text Strings in C — Recap/Review

• Once you have a string, what can you do with it? can process it either as an

array (using indices) or using pointers. Pointer arithmetic can be a help.

• (Another example.)
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Command-Line Arguments in C — Review

• In C, command-line arguments are passed to main as an array of text

strings. So if you define main as

int main(int argc, char * argv[]) { .... }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments — represented as pointers to their first elements(!).

• Reference individual arguments via argv[0], argv[1], etc.

• This should make more sense now that we know about arrays, and (more)

about pointers? and we can write a general “echo arguments” program.
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Converting Text Strings to Numeric Types

• You know about scanf (and fscanf) for converting text input to numeric

types. But what if you have a text string (e.g., a command-line argument) and

want to extract from it a command-line argument? You could use sscanf,

or . . .

• Functions strtol and strtod can help. (atoi and atof can also be

used but do not provide any kind of error checking.)

Usage example:

char *endptr;

long n = strtol(argv[1], &endptr, 10);

if (*endptr != ’\0’) /* error */

• (Example — program to echo command-line arguments, revisited.)
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Minute Essay

• None — quiz.


