
CSCI 1312 November 14, 2018

Slide 1

Administrivia

• (None?)

Slide 2

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. A lot can be done with just these

types, but for a lot of applications it’s really useful to be able to represent

more-complex kinds of data, and in general it’s useful to be able to define

your own types.

• (Aside: A standard computer-science definition of “type” is “a set of values

plus some operations on them”. So for example C’s int represents a set of

integer values in a fixed range, with operations including arithmetic and

relational operators.)



CSCI 1312 November 14, 2018

Slide 3

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.

Slide 4

User-Defined Types in C — struct

• It’s also useful to have ways of representing more-complex “types”.

Simple examples include rational numbers (with integer numerator and

denominator) and points in 2D or 3D space (with two or three coordinates).

More-complex examples . . . Well, it’s almost “the sky’s the limit”, but as one

example think about what might be involved in writing a program with a GUI: It

would seem to make sense to have some way of representing “windows” and

“buttons” and so forth.

• “Object-oriented” languages provide a nice way to do this. C doesn’t provide

a really nice way, but it does provide a way, via structs.



CSCI 1312 November 14, 2018

Slide 5

structs in C

• An array in C (and in most if not all other programming languages) is a

collection of data items all of the same type, and you reference individual

items via indices. Arrays can have any number of elements. You define an

array by giving its type and its dimensions.

• In contrast, a struct is a collection of data items of possibly different

different types. Individual items are called “fields” and have names by which

you can refer to them. For a given struct type, all objects of that type have

the same fields. You define a struct by giving names and types of its

fields. Two syntaxes for doing that.

Slide 6

Defining a struct

• One way to define uses typedef:

typedef struct {

double x;

double y;

} point2D;

point2D some_point;

• Another way doesn’t:

struct point2D {

double x;

double y;

};

struct point2D some_point;



CSCI 1312 November 14, 2018

Slide 7

Accessing Fields in a struct

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct point2D some_point;

some_point.x = 10.1;

some_point.y = 20.1;

-> if what you have is a pointer to a struct:

struct point2D * some_point_ptr = &some_point;

some_point_ptr->x = 10.1;

some_point_ptr->y = 20.1;

Slide 8

structs, This and That

• Can initialize a struct by giving values for all its fields in curly braces, e.g.,

point2D = { 10.1, 20.2 };

(Observe in passing that a similar syntax works for arrays. Textbook mentions

it though we haven’t used it in class.)

• Can assign one struct to another with the usual assignment operator.

• Can pass structs as parameters to functions and return them from

functions, with the usual(?) pass-by-value semantics, meaning that the whole

struct is copied. Can also pass pointers to structs, and for large

structs that’s likely more efficient.



CSCI 1312 November 14, 2018

Slide 9

Sidebar: Files and Program Structure

• All the programs we’ve written have been single files. Fine for small programs

but seems like it might be unwieldy for large ones, no?

• So usually code for large programs is split into multiple files, which can be

separately compiled and then “linked” together to form an executable. This

also allows reuse of the same function(s) in multiple programs. We’ll do

examples of both, later.

• “Library” functions build on this idea: Someone writes code for them, typically

splitting it into a .h file with just declarations of functions (e.g., stdio.h)

and a .c file with code for functions. The code is compiled and turned into

something that can be linked into user programs. What’s distributed might be

just those .h files and the compiled code.

Slide 10

structs – Example(s)

• As an example we might define a struct to represent three-dimensional

vectors and write some functions for it . . .

• We might even usefully put the struct definition in a .h file, so we could

use it in more than one program (with #include "3d-vec.h").



CSCI 1312 November 14, 2018

Slide 11

Minute Essay

• Last time we talked about Conway’s Game of Life. Had you seen or heard of it

before?

• Do you plan to be here next Monday?


