
CSCI 1320 August 30, 2007

Slide 1

Administrivia

• Slides from class will be on Web — preliminary version shortly before class,
final version later that day.

• Code shown in class will usually be on the Web, linked from the “Sample
programs” page here. (This doesn’t matter much now, but if you want the
“hello world” program, it’s there.)

Slide 2

More Administrivia

• A reminder: Please do not reboot the machines in HAS 340! People depend
on these machines to do background processing.

If a previous user has left a machine in the “locked by screensaver” state, you
can bail out by pressing control-alt-backspace to restart X (the graphical
subsystem) without disturbing background processes.

If you log out from the “System” menu, it might be easy to shut down by
mistake. Can put an icon on the task bar for logout to avoid this.

• Prox card access should be enabled now, so you should be able to get into
the labs after hours. (E-mail gives a few more details.)

http://www.cs.trinity.edu/~bmassing/Classes/CS1320_2007fall/SamplePrograms


CSCI 1320 August 30, 2007

Slide 3

“What is a Computer” — Hardware Components

• Input and output devices — connect computer with outside world.

• CPU(s) — what actually does the work (the “brain”). Executes a sequence of
very primitive instructions, such as “fetch a number from memory” or “add two
numbers”. Details of these instructions differ among machines.

• Main memory — very long list of addressable locations, something like a
whiteboard marked off into cells you can write into, read from.

(Ultimately, everything represented in the form of bits — ones and zeros,
off/on switches. Interpret these as numbers, text, . . . )

• Secondary memory — more permanent but less accessible version of main
memory, these days usually disk.

Slide 4

“What is a Computer” — Software

• For practical purposes, computer is always executing some program.

• During execution, programs are stored in main memory (encoded in a way
that corresponds to the primitive operations of this particular computer). Part
of the computer’s state is address of next instruction to be executed.

• Operating system — the program that runs “all the time”. Examples:
Windows, MacOS, DOS, OS/2, Unix, VMS, MVS, etc., etc. For the most part,
it’s talked to by other programs.

• Application programs — what users normally interact with. Examples:
word-processing programs, spreadsheets, Web browsers, games, etc.



CSCI 1320 August 30, 2007

Slide 5

Where Do Programs Come From?

• In early days, programmers wrote in the machine’s language – the primitive
instructions the machine understands. Can still do that, but a lot of work, and
only works for one kind of machine.

• Another way is to write in high-level language — more abstract, less detailed,
somewhat closer to how humans think — and have a program that translates
this into the machine’s language.

• We call the input to these translation programs source code their output
object code, and the programs assemblers or compilers.

(Where does source code come from? It’s plain text, and can be produced
using a text editor such as vi, or with other tools — but typically not with a
word processor. (Look at a Word file with vi sometime!))

Slide 6

Where Do Programs Come From?, Continued

• Is object code a complete program ready to be executed? Maybe. But
typically some common operations (I/O, e.g.) are provided via a library (of
object code), and to get complete program you combine your object code with
library via a linker to get an executable. For simple programs, compiling and
linking often combined into one step.

• This executable (file) can be loaded into memory by the operating system and
executed. This is where most applications come from — ls, vi.

(Compare results of file a.out (that we produced) to result of file
/bin/ls.)



CSCI 1320 August 30, 2007

Slide 7

Recap — Linux Command-Line Environment

• Notion of “home directory”.

• Commands to work with directories (folders): cd, mkdir, rmdir, pwd,
ls.

• Commands to work with files: cp, mv, rm, vi.

• Commands to get information: man, man -k (a.k.a. apropos). Works
for most commands and some functions (more about that later).

Read man page for less to understand how to page through information.

man -a foo gives all man pages for foo. Example: printf.

Slide 8

File Permissions in Unix/Linux

• Access to files specified in terms of three categories of users (owner, group,
and other) and three kinds of access (read, write, and execute).

• To show permissions, ls -l. First character says directory/not, then three
groups of three letters each (rwx), one for each category of user. Example:

-rw------- 1 bmassing bmassing 115 2007-08-30 10:07 hello.c

• To change permissions, chmod. Can specify via octal (base 8) numbers, but
usually easier to use symbolic mode. Examples:

chmod go= foo to say only owner can access foo.

chmod go+r foo to say everyone can read foo (but not necessarily
write it).

• Also see tutorials on files, file security linked from “Useful links” page here.

http://www.cs.trinity.edu/~bmassing/Classes/CS1320_2007fall/HTML/links.html


CSCI 1320 August 30, 2007

Slide 9

Remote Access to the Lab Machines

• From another Unix/Linux machine: Open a terminal window, type ssh
user@machine.

(This includes Mac OS X.)

• From a Windows machine, use PuTTY or Cygwin. Also should be able to
access home directory on Sol (department Linux file server) from Windows.
(Quick demo.)

• Also see my Web page on remote access here. It has links to where you can
download PuTTY and Cygwin.

Access from off-campus is possible but requires that you tell us (the CS
admin people) your IP address. Come talk to me, or send mail.

Slide 10

Minute Essay

• (These were the questions I meant to ask, but I thought we had run out of
time, so I just asked you to sign in. Think about them for next time.)

• Most general-purpose computers you’ve seen these days have CPUs that
execute the “x86” instruction set. But some don’t (e.g., IBM mainframes). Do
you think an executable (file) produced by gcc can be run on an IBM
mainframe? If not, why?

• What if we took the source code and compiled it on the IBM? Would it
compile? Would the resulting executable be the same as compiling it on one
of our lab machines?

http://www.cs.trinity.edu/~bmassing/Misc/remote-access/


CSCI 1320 August 30, 2007

Slide 11

Minute Essay Answer

• No, generally speaking the executable produced on one kind of machine
won’t run on another — the low-level operations of the processor and the way
they’re encoded might be different.

• The same source code can be used to produce executables for different kinds
of machines. (That’s one of the benefits of high-level languages.) On each
machine, you use a compiler tailored for to that type of machine, and it
produces an appropriate executable.


