Administrivia

- Reminder: Homework 2 due Thursday.
- Reminder: Quiz 2 Thursday. Likely topics are programs from class - "what does this program print?" or "write a program to do this task".

Slide 1

Computer Representation of Integers

- Computers represent everything in terms of ones and zeros. For non-negative integers, you can probably guess how this works - number in binary. Fixed size (so we can only represent a limited range).
- How about negative numbers, though? No way to directly represent

Slide 2 plus/minus. Various schemes are possible. The one most used now is "two's complement": Motivated by the idea that it would be nice if the way we add numbers doesn't depend on their sign. So first let's talk about addition ..

Machine Arithmetic - Integer Addition and Negative Numbers

- Adding binary numbers works just like adding base-10 numbers - work from right to left, carry as needed. (Example.)
- Two's complement representation of negative numbers is chosen so that we

Slide 3

 easily get 0 when we add $-n$ and n.Computing $-n$ is easy with a simple trick: If m is the number of bits we're using, addition is in effect modulo 2^{m}. So $-n$ is equivalent to $2^{m}-n$, which we can compute as $\left.\left(\left(2^{m}-1\right)-n\right)+1\right)$.

- So now we can easily (?) do subtraction too - to compute $a-b$, compute $-b$ and add.

Machine Arithmetic - Bit Shifting

- With base-10 numbers, multiplying (and dividing) by powers of 10 is easy, right? just shift the decimal point.
- Same idea applies to binary numbers and powers of two - "bit shifting".

Slide 4

Machine Arithmetic - Integer Multiplication

- Multiplying binary numbers also works just like multiplying base-10 numbers - for each digit of the second operand, compute a partial result, and add them.
- (This can get tricky, when adding more than two partial results involves

Slide 5

 carrying.)
Binary Fractions

- We talked about integer binary numbers. How would we represent fractions?
- With base-10 numbers, the digits after the decimal point represent negative powers of 10 . Same idea works in binary.

Slide 6

Computer Representation of Real Numbers

- How are non-integer numbers represented? usually as floating point.
- Idea is similar to scientific notation - represent number as a binary fraction multiplied by a power of 2 :

Slide 7

$$
x=(-1)^{\text {sign }} \times(1+f r a c) \times 2^{\text {bias }+e x p}
$$

and then store sign frac, and exp. Sign is one bit; number of bits for the other two fields varies - e.g., for usual single-precision, 8 bits for exponent and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive and negative exponents.

Numbers in Math Versus Numbers in Programming

- The integers and real numbers of the idealized world of math have some properties not (completely) shared by their computer representations.
- Math integers can be any size; computer integers can't.
- Math real numbers can be any size and precision; floating-point numbers

Slide 8 can't. Also, some quantities that can be represented easily in decimal can't be represented in binary.

- Math operations on integers and reals have properties such as associativity that don't necessarily hold for the computer representations. (Yes, really!)

Type Conversions

- Implicit conversions: When you assign a value of one type to another (e.g., float to int), or write an expression that mixes types, C will perform an implicit conversion.
- Explicit conversions: Putting a type in parentheses before an expression

Slide 9

 means you want to convert to the indicated type. Example:(double) (1 / 2)
versus
(double) $1 /(d o u b l e) 2$
This is called casting.

Minute Essay

- What is the base-10 value of the binary number $.101_{2}$? (Okay to write as a fraction or even as an expression.)
- What are you finding interesting, annoying, difficult, etc., about Homework 2?

