
CSCI 1320 September 25, 2007

Slide 1

Administrivia

• Reminder: Homework 2 due Thursday.

• Reminder: Quiz 2 Thursday. Likely topics are programs from class — “what
does this program print?” or “write a program to do this task”.

Slide 2

Computer Representation of Integers

• Computers represent everything in terms of ones and zeros. For
non-negative integers, you can probably guess how this works — number in
binary. Fixed size (so we can only represent a limited range).

• How about negative numbers, though? No way to directly represent
plus/minus. Various schemes are possible. The one most used now is “two’s
complement”: Motivated by the idea that it would be nice if the way we add
numbers doesn’t depend on their sign. So first let’s talk about addition . . .



CSCI 1320 September 25, 2007

Slide 3

Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from
right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we
easily get 0 when we add−n and n.

Computing−n is easy with a simple trick: If m is the number of bits we’re
using, addition is in effect modulo 2m. So−n is equivalent to 2m − n, which
we can compute as ((2m − 1)− n) + 1).

• So now we can easily (?) do subtraction too — to compute a− b, compute
−b and add.

Slide 4

Machine Arithmetic — Bit Shifting

• With base-10 numbers, multiplying (and dividing) by powers of 10 is easy,
right? just shift the decimal point.

• Same idea applies to binary numbers and powers of two — “bit shifting”.



CSCI 1320 September 25, 2007

Slide 5

Machine Arithmetic — Integer Multiplication

• Multiplying binary numbers also works just like multiplying base-10 numbers
— for each digit of the second operand, compute a partial result, and add
them.

• (This can get tricky, when adding more than two partial results involves
carrying.)

Slide 6

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative
powers of 10. Same idea works in binary.



CSCI 1320 September 25, 2007

Slide 7

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction
multiplied by a power of 2:

x = (−1)sign × (1 + frac)× 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the
other two fields varies — e.g., for usual single-precision, 8 bits for exponent
and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive
and negative exponents.

Slide 8

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some
properties not (completely) shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers
can’t. Also, some quantities that can be represented easily in decimal can’t be
represented in binary.

• Math operations on integers and reals have properties such as associativity
that don’t necessarily hold for the computer representations. (Yes, really!)



CSCI 1320 September 25, 2007

Slide 9

Type Conversions

• Implicit conversions: When you assign a value of one type to another (e.g.,
float to int), or write an expression that mixes types, C will perform an
implicit conversion.

• Explicit conversions: Putting a type in parentheses before an expression
means you want to convert to the indicated type. Example:

(double) (1 / 2)

versus

(double) 1 / (double) 2

This is called casting.

Slide 10

Minute Essay

• What is the base-10 value of the binary number .1012? (Okay to write as a
fraction or even as an expression.)

• What are you finding interesting, annoying, difficult, etc., about Homework 2?



CSCI 1320 September 25, 2007

Slide 11

Minute Essay Answer

• .1012 is 2−1 + 2−3, i.e., 5/8.


