CSCI 1320 September 27, 2007

Administrivia

o Reminder: Homework 2 due today at 5pm. Send me your program source

code (two text files) by e-mail.

o Homework 3 will be on the Web later today / early tomorrow. Due next
Thursday.

Slide 1 e Quiz solutions will be online shortly after class. | will also usually bring one
printed solution you can look at after you turn in your paper.

Encouraging(?) Words

e Writing programs is not easy. If you've finished at least one of the
Homework 2 problems, you've done something most people don’t know how
to do (!). And you're doing it with tools that aren’t particularly easy either.

e Quote of the day/week/something, from a key figure in the early days of

Slide 2 computing:

“As soon as we started programming, we found to our surprise that it wasn’t
as easy to get programs right as we had thought. Debugging had to be
discovered. | can remember the exact instant when | realized that a large part
of my life from then on was going to be spent finding mistakes in my own
programs.” (Maurice Wilkes: 1948)

CSCI 1320 September 27, 2007

Tips for Using the Command-Line Environment

o Someone asked about commands for moving and copying files, etc.
Summary available here, linked from “Lecture topics and assignments” and
“Useful links” pages. Also mentions shortcuts such as arrow keys to repeat

previous command, tab to fill in filename.

Slide 3 o Unix fan’s response to a claim that Unix isn’t user-friendly: “Sure it is; it's just
choosy about its friends.”

Tips for Dealing with Compiler Errors

® gcc’s error messages aren’t always helpful to beginners. As you get
experience they will mean more. Some advice for now:

e Fix the first error mentioned, then try again to compile. Sometimes this will

resolve many reported errors at once.

Slide 4 e Most error messages reference a line number. Look at that line and the line
above; you can often spot the problem even if you don’t completely
understand the error message.

http://www.cs.trinity.edu/~bmassing/Misc/1320-tips-unix.html

CSCI 1320 September 27, 2007

(Tips for Dealing With Runtime Errors)

e You may have observed that even after the program compiles without error, it
may not work — it may crash (e.g., give a cryptic error message and stop), or
it may run but give wrong answers.

e A very typical error message is Segmentation fault. Most likely
Slide 5 cause right now is not putting that & in front of a variable name ina scanf
call.

e For dealing with wrong answers ... (next slide).

Tracing Code

e A valuable skill to have is working through what the computer will do when it
executes your program — “tracing code” (also known as “playing computer”).

e |dea is to write down names of variables, their values; when one changes,

cross out old value and put in new one.

Slide 6 e Let’'s do an example using code from last week.

CSCI 1320 September 27, 2007

Conditional Execution

e So far all our programs have executed the same statements every time, just
maybe with different numbers.

e Often, though, we want to be able to do different things in different
circumstances — for example, print an error message and stop if the input
Slide 7 values don’t make sense (such as a negative number for the program to make

change).

e So, C (like most languages) provides some constructs for conditional
execution

Boolean Expressions

® A Boolean value is either true or false; a Boolean expression is something
that evaluates to true or false.

e We can make simple examples in C using familiar math comparison
operators. Examples:

Slide 8 -x > 10
-y <=5
— x == vy (NOTE the use of == and not =.)

CSCI 1320 September 27, 2007

4)

Boolean Expressions, Continued

e Boolean algebra defines some operators on these values; the most important
for us are written in C as

— I —*not”, true if the operand is false.

- && —“and’, true if both operands are true.

Slide 9 — | | —"or”, true if either operand is true (or both are).

e Can use these to build up complex expressions. As with arithmetic
expressions, use parentheses when in doubt. Examples:
- (x >= 0) && (x <= 10)

- !'(x == y) (though we could also just write x != vy).

Boolean Expressions in C

e Although there are only two Boolean values, C represents them as ints,
with 0 meaning true and anything else meaning false. (Usually you don’t care
about this, but it can be good to know.)

e This means that the compiler will accept both x == yandx = vy, but
Slide 10 they mean different things. Very common mistake (and not just for beginners).

CSCI 1320 September 27, 2007

Conditional Execution — 1if/else

e To execute a statement if an expression evaluates to true, use if:
if (x > 0)
printf("greater than zero\n");
e To execute one statement if an expression is true, another if it’s false, use i £
Slide 11 and else:
if (x > 0)
printf ("greater than zero\n");

else

printf("not greater than zero\n");

4)

if/else, Continued

e To execute a group (“block”) of statements rather than just a single statement,
use curly braces for grouping:

if (x > 0) |
printf ("greater than zero\n");
Slide 12 printf("and that is good\n");
}
else {
printf("not greater than zero\n");
printf("and that is bad\n");
}

o What happens if you forget the braces? The program may still compile and
run, but it probably won’t do what you meant.

. J

CSCI 1320

September 27, 2007

Slide 13

e None — quiz.

