
CSCI 1320 October 2, 2007

Slide 1

Administrivia

• Reminder: Quiz 3 Thursday. Likely topics are conditional execution (similar to
example from last time, first few slides today, homework) and possibly use of
library functions.

• Reminder: Homework 3 due Thursday.

Slide 2

Defining Named Constants with Preprocessor Directives

• Sometimes it makes sense to use numeric constants in programs — e.g., in
the Fahrenheit-to-Celsius temperature conversion program (homework).

• But sometimes it’s more readable, for humans, to give these constants a
name. Can do this with #define. Examples:

#define DAYS IN YEAR 365

#define SECONDS IN YEAR (365*24*60*60)

Then when you write DAYS IN YEAR, compiler (strictly speaking, its
preprocessor) replaces it with 365.

Notice also that if we need to calculate something, as in the second example,
it’s usually more readable to just write out the expression and let the compiler
do the calculation.

• See revised program to make change, linked from the “Sample programs”
page here.

http://www.cs.trinity.edu/~bmassing/Classes/CS1320_2007fall/SamplePrograms

CSCI 1320 October 2, 2007

Slide 3

Conditional Execution, Continued

• Last time we looked at examples of conditional execution, with at most two
cases. What if more than two? We could “nest” if/else constructs, e.g.,

if (x < 0) {
printf("less than\n");

}
else {

if (x > 0) {
printf("greater than\n");

}
else {

printf("equal\n");
}

}

• But this gets ugly fairly quickly. So . . .

Slide 4

Conditional Execution, Continued

• Better:

if (x < 0) {
printf("less than\n");

}
else if (x > 0) {

printf("greater than\n");
}
else {

printf("equal\n");
}

• Can have as many cases as we need; can omit else if not needed.

CSCI 1320 October 2, 2007

Slide 5

Conditional Execution, Continued

• Sometimes we can go further, though. If all of the conditions are of the form

integer expression == value

then we can use the switch construct. Notice that characters (char)
count as integers in this context.

• Example (similar to calculator example in book) on next slide.

Slide 6

Conditional Execution, Continued

• char menu_pick; /* should be one of ’+’, ’-’ */
/* */
switch (menu_pick) {

case ’+’:
result = input1 + input2;
break;

case ’-’:
result = input1 + input2;
break;

default:
result = 0;
printf("operator not recognized\n");

}

CSCI 1320 October 2, 2007

Slide 7

Conditional Expressions

• C also provides a short way to express things of the form

if (condition)
variable = value1

else
variable = value2

namely the ternary (three operands) operator ?.

• Example:

sign = (x >= 0) ? 1 : -1;

assigns 1 to sign if x is non-negative, -1 otherwise.

• (Use with caution — compact, but can easily lead to code that’s difficult for
humans to understand.)

Slide 8

Functions and Problem Decomposition

• So far all our programs have been one big chunk of code. This is okay for
simple programs, but quickly becomes difficult to understand as problems get
bigger.

• Further, some things we don’t want to, or can’t, really write ourselves, such as
the code for input/output.

• So C, like many/most other programming languages, gives you a way of
decomposing problems into subproblems. C calls them functions. Using this
feature to good effect is something of an art, but may teach you something
about problem decomposition in general, which is a useful skill.

CSCI 1320 October 2, 2007

Slide 9

Functions in C

• C functions are similar to functions in math, except that they can have side
effects (similar to how evaluation of expressions can have side effects).

• We will talk a little now, and more next time, about how to define our own
functions. Notice for now that every program you / we have written so far
defines a function called main, and most of them use system library
functions scanf and printf.

Slide 10

Functions in C, Continued

• Every function has

– A name (where rules for names are the same as those for variables).

– Zero or more inputs (called parameters).

– A return type (void to indicate that the function doesn’t return anything).

– Some code to be executed when the function is called.

• When you call (use) a function, you

– Supply values for inputs (pass in values for parameters).

– Optionally, use the value returned by the function. The function call is an
expression, as discussed previously, and its value is the value returned by
the function.

CSCI 1320 October 2, 2007

Slide 11

Defining and Using Functions

• Simple example of defining and using a function to add two integers:

int add(int a, int b) {
return a + b;

}
int main(void) {

int result = add(1, 2);
printf("%d\n", result);
return 0;

}

• add has two parameters (a type of variable) called a and b. When we call
add from main, the values 1 and 2 are copied into these variables. The
code in add executes until it reaches a return. At that point, we go back
to the calling function, and the value of the function call is whatever is after
the keyword return.

Slide 12

The main Function

• As noted, every C program you / we have written so far includes a definition of
a function called main. All complete C programs must have such a function.

• main is defined in your code:

– It has no parameters. (Actually, it can — there’s an alternative definition
that allows it to accept command-line arguments, similar to the ones that
follow commands such as gcc, ls, etc. Later!)

– It returns an integer value.

• main is called by some type of environment (the command shell for us,
when you type a.out after compiling). It gives your code the optional
parameters (more about this later) and receives the value you return. Return
value can be used to indicate success/failure (useful for shells that
themselves support conditional execution).

CSCI 1320 October 2, 2007

Slide 13

C Library Functions

• Standard C comes with a number of library functions to do things many
programs want to do.

• Examples we’ve seen so far — scanf, printf.

• Unix/Linux systems normally have man pages for these functions, describing
parameters and return values in full detail (hence, not always easy reading).

(Tip: man printf gives the man page for a command rather than the C
function. Use man 3 printf to get what we want.)

(Tip: When reading a man page, h will bring up a summary of what keys do
what — page up/down, quit, etc.)

Slide 14

C Library Functions, Continued

• Another library function you will probably find useful for the next homework —
sqrt.

• Its man page describes what it does, and also tells you two things you need
to do to use it:

– In your program, #include <math.h>.

– When you compile, -lm, e.g.

gcc myprogram.c -lm

(You may not need this, unless you get an error message about sqrt
being undefined. Seems to depend on version/setup of compiler.)

• Example — program to compute hypotenuse of a right triangle, linked from
the “Sample programs” page here.

http://www.cs.trinity.edu/~bmassing/Classes/CS1320_2007fall/SamplePrograms

CSCI 1320 October 2, 2007

Slide 15

Minute Essay

• Below is a partial program to get an integer from the user, compute its
absolute value, and print it. What would you add to make it work? (Just tell
me what you’d put at the two marked points, and if you would make other
changes.)

Hint: Use the abs function.

#include <stdio.h>
/* add something here? (1) */
int main(void) {

int input;
printf("enter an integer:\n");
scanf("%d", &input);
/* add something here (2) */
return 0;

}

Slide 16

Minute Essay Answer

• One solution:

#include <stdio.h>
#include <stdlib.h>
int main(void) {

int input;
printf("enter an integer:\n");
scanf("%d", &input);
printf("the absolute value of %d is %d\n",

input, abs(input));
return 0;

}

