
CSCI 1320 October 11, 2007

Slide 1

Administrivia

• Homework 4 will be on the Web later today / early tomorrow, due a week from
today.

• Midterms to be returned next time.

Slide 2

Functions — Recap

• Purpose of functions — decompose problem into smaller problems. Also
helps avoid duplicating code.

• C functions are similar in some ways to math functions, but can have side
effects. (Sometimes the side effects are actually the only effects we care
about — e.g., with printf).

• In C, parameters are passed by value — i.e., copied. This means that any
changes made in a called function aren’t visible to the caller, and also
(apparently) that a function can only pass information back to its caller
through its single return value.

(“Apparently” is because there is a way, discussed in the textbook and used
by scanf. We’ll talk about it later, when we discuss pointers.)



CSCI 1320 October 11, 2007

Slide 3

C Functions — Declaration Versus Definition

• So far we’ve looked at function definitions, which consist of

– A name.

– Zero or more inputs (parameters).

– A return type.

– Some code to be executed when the function is called.

• In the hypotenuse example from last week, we defined a function
hypotenuse and used it in main. How did the compiler know what we
meant when we used hypotenuse? because we had a definition there in
the file, earlier.

How does the compiler know what we mean when we call, say, printf?

Slide 4

Sidebar — Compiling and Linking, Recap

• Early in the semester we talked about source code versus object code versus
executables. Reviewing:

• Compilers read source code and produce object code, consisting of
machine-language instructions and information about functions defined,
functions needed.

• Linkers take these files and combine them into executables, complete
programs that can be launched by the environment (operating system).
Usually, this involves combining object code for your functions with
system/library object code.

(Caveat: Some systems also allow for library code to be brought in at runtime
— “shared libraries” in Unix-speak, “DLLs (dynamic link libraries)” in
Windows-speak.)



CSCI 1320 October 11, 2007

Slide 5

C Functions — Declaration Versus Definition, Continued

• “How does it know what we mean?” has two parts:

– Compiler needs to know about the function’s parameters (how many, their
types) and return types. It will make guesses if it doesn’t know, but it might
guess wrong.

– Linker has to be able to find function’s code.

• Compiler can get what it needs if we include a function declaration before the
first use of the function.

• Linker can get what it needs if the function is also defined in the same file as
its caller, or if it can find it in a library of compiled code.

• Example — revise hypotenuse program to have separate declaration and
definition.

• Now think about printf again . . .

Slide 6

C Library Functions, Revisited

• The compiler gets what it needs to know about library functions from
declarations in files included with an #include directive. There are
standard places to find these files; stdio.h is in /usr/include.
(Look at it briefly.) You can also tell the compiler other places to look.

• Where does the linker find the actual code? There’s a list of standard places it
looks, and some default files it looks at there. (For printf,
/usr/lib/libc.a or /usr/lib/libc.so.) You can also tell it to
look in other places, and/or at additional files. (That’s what the -lm flag does
— tells the linker to also look in the math library file.)



CSCI 1320 October 11, 2007

Slide 7

Using Functions Effectively

• Functions are most helpful for two purposes: decomposing the problem into
manageable chunks, and avoiding duplication of code.

• Let’s do a short example — a program that lets us convert several kind of
“English” units (feet, inches, etc.) to metric equivalents. This can also be an
example of using a character variable and the switch construct.

Slide 8

Functions and Recursion

• Something else we want to be able to do is repeat something some fixed
number of times, or until some condition is true — for example, in the
converter program, prompt again if we get invalid input.

• We’ll talk next week about some new constructs to do that, but we can do it
now, with recursion — having a function call itself.

• Simple examples next time.



CSCI 1320 October 11, 2007

Slide 9

Minute Essay

• Tell me a little about your experiences with the homework so far — what’s
been interesting, useful, difficult, annoying, noteworthy, etc.


