
CSCI 1320 October 16, 2007

Slide 1

Administrivia

• Homework 2 grades sent by e-mail. Homework 3 grades and summary of
grades coming soon.

• (Return midterms, discuss.)

• Reminder: Homework 4 due Thursday.

Slide 2

Unix/Linux Tip

• I strongly encourage using gcc -Wall -pedantic. But that’s a lot to
type every time. So:

• Remember that the up arrow cycles through previous commands.

• Or copy the Makefile from the “Sample programs” page here. into the
directory with your programs, and type make hello to compile
hello.c. Note that the result will be called hello rather than a.out
(so to run it you type hello rather than a.out).

http://www.cs.trinity.edu/~bmassing/Class/CS1320_2007fall/SamplePrograms


CSCI 1320 October 16, 2007

Slide 3

Functions and Recursion

• As mentioned last time: Something else we want to be able to do is repeat
something some fixed number of times, or until some condition is true — for
example, in the converter program, prompt again if we get invalid input.

• Chapter 6 introduces some new constructs for this — our next topic — but we
can also do it with tools we had before, using recursion — having a function
call itself.

Obviously to make this work we need a way to stop recursing — a base case
— otherwise we have something akin to the in-joke definition of GNU (“GNU
is Not Unix”).

Also we need to be sure that every recursive call brings us closer to a base
case.

Slide 4

Recursion, Continued

• How it works: When you call any function, the current “state” (values of
variables) is preserved (“pushed onto a stack”), and space is reserved for the
called function’s local variables (including parameters). When the function
returns, this space is freed up again. So if we stack up recursive calls to the
same function, each has its own copy of all local variables.

• Simple examples — Fibonacci numbers, counting.



CSCI 1320 October 16, 2007

Slide 5

Repetition

• So we have one way to repeat something. But it’s often not efficient (every
call to a function requires space for local variables, and at some point you can
run out of room), nor is it always convenient (writing a function every time you
want to repeat something).

• Hence C, like most procedural languages, offers constructs called loops. All
have four basic elements (sometimes implicit).

Slide 6

Loop Elements

• Initializer — something that sets initial values for variables involved in the
repetition (iteration).

• Condition — something that determines whether repetition continues. Can be
tested at the start of each iteration (pre-test loop) or at the end (post-test
loop).

• Body — the code to repeat.

• Iterator — something that moves on to the next iteration.



CSCI 1320 October 16, 2007

Slide 7

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and
iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */
while (n <= 10) { /* condition */

printf("%d\n", n); /* body */
n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

Slide 8

for Loops

• Probably the most common type of loop. Particularly useful for anything
involving counting, but can be more general. Syntax has explicit places for
initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

int n;
for (n = 1; n <= 10; ++n) {

printf("%d\n", n);
}

• Initializer happens once (at start); condition is evaluated at the start of each
iteration; iterator is executed at the end of each iteration.



CSCI 1320 October 16, 2007

Slide 9

do while Loops

• Looks very similar to while loop, but test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */
do {

printf("%d\n", n); /* body */
n = n + 1; /* iterator */

} while (n <= 10); /* condition */

Slide 10

Loop Examples

• Examples as time permits . . .



CSCI 1320 October 16, 2007

Slide 11

Minute Essay

• How did the midterm compare to your expectations? with regard to length,
difficulty, topics, anything else?


