
CSCI 1320 October 18, 2007

Slide 1

Administrivia

• Reminder: Homework 4 due at 5pm today.

• Reminder: Quiz 4 Tuesday. Likely topic is functions.

Slide 2

Homework 3, Revisited

• Second problem asked you to write a program to solve a quadratic equation

ax2 + bx+ c = 0

using the rule that if √
b2 − 4ac ≥ 0

there are two roots given by

−b±
√
b2 − 4ac

2a

• What happens if a = 0? (Oops. See updated solution on Web.)



CSCI 1320 October 18, 2007

Slide 3

Functions — Review

• Functions are somewhat like math functions — zero or more inputs, one
output (return value) or none.

• Defining a function – specify

– Its name (same rules as for variables — letters, numbers, underscores).

– What parameters it needs (types, “local names” — void if none.

– What type of thing it returns (void if nothing).

– Some code. Can include local variables. If function returns something
other than void, must include at least one return followed by the
value to return.

• Declaring a function — just give name, parameters, return type. Definition
can be somewhere else in the program.

Slide 4

Functions — Review, Continued

• Calling a function — give its name, values for parameters. This is an
expression (in the same sense as, say, x+1) and — unless the function
returns void — has a value, which can be assigned to a variable, used as
part of a boolean expression for conditional execution, etc.

• Since a function call is an expression — when we come to one, we evaluate it:

Pause what’s currently happening. Copy values of input variables to function’s
parameters. Execute code in function until we get to a return, or the
ending curly brace. Whatever expression follows return is the function’s
(return) value. Continue execution in “caller” using return value.

Notice that executing code in the function may produce “side effects” (e.g.,
printing something).



CSCI 1320 October 18, 2007

Slide 5

Repetition — Review/Recap

• Several ways to repeat something — recursion. loop constructs discussed
last time.

• Which to use? in general, the one that makes the programs easiest for
humans to understand — worry about efficiency only when it matters.

Slide 6

Example of Using Loops

• Look again at the “convert English to metric” example program. We could
make some improvements (or changes anyway) . . .

• First change it so it lets you do multiple conversions without running the
program again.

• Now change the function that gets a number so if you type in something other
than a number, it asks again.



CSCI 1320 October 18, 2007

Slide 7

Another Loop Example

• We could write the following to print values 0 through 9:

int i = 0;
while (i != 10) {

printf("%d\n", i);
i += 1;

}

• So if we wanted to print values 0.0 through 0.9, we might write

float f = 0;
while (f != 1.0) {

printf("%f\n", f);
f += 0.1;

}

Let’s try it . . .

Slide 8

Homework 3, Revisited

• Now that we’ve been reminded that we can’t represent all decimal fractions in
floating-point:

In the first problem (computing income tax), using floating-point numbers of
any kind to represent money is a bad idea! commonly done, but — at best
sloppy, and sometimes you get answers you don’t expect!

• What to do instead? Here, makes sense to compute pennies and then round
to whole dollars.

(Updated solution on Web.)



CSCI 1320 October 18, 2007

Slide 9

Minute Essay

• Write a loop to print the even numbers from 0 through 10. (You can use
while, for, or do while. If you have time, try doing all three.)

Slide 10

Minute Essay Answer

• Here are some solutions;
int n;

n = 0;
while (n <= 10) {

printf("%d\n", n);
n += 2;

}

for (n = 0; n <= 10; n += 2) {
printf("%d\n", n);

}

n = 0;
do {

printf("%d\n", n);
n += 2;

} while (n <= 10);


