CSCI 1320 October 25, 2007

Administrivia

e Reminder: Homework 5 due Tuesday.

e (Everyone got my e-mail about Linux tools, right? graphical file browser, other
text editors, etc.)

Slide 1

(Files and C A

o Why files? You probably already know: Things stored in memory vanish when
you turn the computer off; to preserve them, usually save them as files.

o We know one way for a C program to get its input from a file, or write its
output to a file — I/O (input/output) redirection. But this makes it difficult or
Slide 2 impossible to also get input from the keyboard, write output to the screen.

e So C (like many other programming languages) provides ways to work more
generally with files.

CSCI 1320 October 25, 2007

Streams

e C’s notion of file I/0O is based on the notion of a stream — a sequence of
characters/bytes. Streams can be text (characters arranged into lines
separated by something platform-dependent) or binary (any kind of bytes).
Unix doesn’t make a distinction, but other operating systems do.

Slide 3 e An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

e An output stream is a sequence of characters/bytes produced by your
program (think of characters being printed to the screen, including special
characters such as the one for going to the next line).

Streams in C

e In C, streams are represented by the type FILE x. FILE is something
defined in stdio.h. The x means pointer (which we’ll talk about later).

e A few streams are predefined — stdin for standard input, stdout for
standard output, stdexrr) for standard error (also output, but distinct from
Slide 4 stdout so you can separate normal output from error messages if you

want to).

e To create other streams — next slide.

CSCI 1320 October 25, 2007

Creating Streams in C

e To create a stream connected with a file — fopen.
e Parameters, from its man page:

— First parameter is the name of the file (for now, text in double quotes).

— Second parameter is how we want to access the file — read or write,

Slide 5 overwrite or append — plus a b for binary files.

— Returnvalueisa FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you
think of reasons this might happen?)

Working With Streams in C

e To read from an input stream — £ scanf, almost identical to scanf. To
write to an output stream — fprintf, almostidentical to printf.
fgetc and fputc may also be useful.

o When done with a stream, fclose to tidy up. (Particularly important for
Slide 6 output files, which otherwise may not be completely written out.)

CSCI 1320 October 25, 2007

Examples

e Example — read integers from numbers . txt, write even ones to

evens.txt, oddonesto odds. txt.

o Example — file-to-file copy, but turning uppercase into lowercase and vice
versa. (This will also be practice using the character-oriented library functions

Slide 7 described in the textbook.)

e (Other examples as time permits?)

e What do you view as the biggest limiting factor right now when you're writing
C programs? What would you like to be able to do that we haven't talked

about yet?

Slide 8

