
CSCI 1320 October 25, 2007

Slide 1

Administrivia

• Reminder: Homework 5 due Tuesday.

• (Everyone got my e-mail about Linux tools, right? graphical file browser, other
text editors, etc.)

Slide 2

Files and C

• Why files? You probably already know: Things stored in memory vanish when
you turn the computer off; to preserve them, usually save them as files.

• We know one way for a C program to get its input from a file, or write its
output to a file — I/O (input/output) redirection. But this makes it difficult or
impossible to also get input from the keyboard, write output to the screen.

• So C (like many other programming languages) provides ways to work more
generally with files.



CSCI 1320 October 25, 2007

Slide 3

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of
characters/bytes. Streams can be text (characters arranged into lines
separated by something platform-dependent) or binary (any kind of bytes).
Unix doesn’t make a distinction, but other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program
(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your
program (think of characters being printed to the screen, including special
characters such as the one for going to the next line).

Slide 4

Streams in C

• In C, streams are represented by the type FILE *. FILE is something
defined in stdio.h. The * means pointer (which we’ll talk about later).

• A few streams are predefined — stdin for standard input, stdout for
standard output, stderr) for standard error (also output, but distinct from
stdout so you can separate normal output from error messages if you
want to).

• To create other streams — next slide.



CSCI 1320 October 25, 2007

Slide 5

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file (for now, text in double quotes).

– Second parameter is how we want to access the file – read or write,
overwrite or append — plus a b for binary files.

– Return value is a FILE * — a somewhat mysterious thing, but one we
can pass to other functions. If NULL, the open did not succeed. (Can you
think of reasons this might happen?)

Slide 6

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To
write to an output stream — fprintf, almost identical to printf.
fgetc and fputc may also be useful.

• When done with a stream, fclose to tidy up. (Particularly important for
output files, which otherwise may not be completely written out.)



CSCI 1320 October 25, 2007

Slide 7

Examples

• Example — read integers from numbers.txt, write even ones to
evens.txt, odd ones to odds.txt.

• Example — file-to-file copy, but turning uppercase into lowercase and vice
versa. (This will also be practice using the character-oriented library functions
described in the textbook.)

• (Other examples as time permits?)

Slide 8

Minute Essay

• What do you view as the biggest limiting factor right now when you’re writing
C programs? What would you like to be able to do that we haven’t talked
about yet?


