
CSCI 1320 November 1, 2007

Slide 1

Administrivia

• Reminder: Homework 5 due today. Will be considered on time if sent before
midnight.

• Office hours today — 2pm to 2:50pm, 3:30pm to 5pm. (How many are still
having trouble with the second problem?)

• Next homework to be on Web later today / early tomorrow. Probably due next
Thursday.

• Course next semester (shameless self-promotion?):

– CSCI 3294 (Unix Power Tools) — similar to course two years ago, syllabus
and notes on the Web, linked from my home page under “Old course
materials”.

Slide 2

Minute Essay From Last Lecture

• (I asked about what you thought was the biggest limiting factor in your ability
to write code, what you wanted to be able to do. Many thoughtful answers!)

• “Hard to remember everything” — yes, but practice will help. Same thing
applies to being able to decipher error messages.

• Cut/copy/paste in vim — :help visual.txt explains the method
you’ll probably like best, and/or the tutorial (vimtutor from the command
line).

• Programs that do something more exciting(?) than simple text input/output —
well, you can’t really “get there from here” in standard C. Other programming
languages (e.g., Java) make it easier.



CSCI 1320 November 1, 2007

Slide 3

Why Arrays?

• Suppose you wanted to write a program to count how many times each letter
occurs in a text file. What would you do? Is there an obvious way to solve this
with what we’ve discussed so far?

Slide 4

Why Arrays?, Continued

• You could have a variable for how many A’s, one for how many B’s, etc., and a
huge switch construct. But how ugly . . .

• What seems to be needed is something similar to subscripted variables in
math — an array.



CSCI 1320 November 1, 2007

Slide 5

Arrays

• Previously we’ve talked about how to reserve space for a single
number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many
numbers/characters and give a common name to all. You can then reference
an individual element via its index (similar to subscripts in math).

Slide 6

Arrays in C

• Declaring an array — give its type, name, and how many elements.
Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In
old C, it had to be a constant. In newer C, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging
from 0 to array size minus 1). Index can be a constant or a variable. Then use
as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)



CSCI 1320 November 1, 2007

Slide 7

Arrays in C, Continued

• Declaring that a function parameter is an array — put brackets after
parameter, usually don’t specify array size as part of array parameter.
Example:

double array sum(int size, double nums[]);

(The newer C99 standard supports a slightly different syntax. More about this
another time.)

• Passing an array to a function — just give its name. Example:

double stuff[100];
printf("%f\n", array sum(100, stuff));

Slide 8

Arrays in C, Continued

• Using an array parameter within the function — as in previous examples.

• A difference between array parameters and other parameters — array
elements can be changed.

• If your function isn’t supposed to change the array, declare the parameter
const, e.g.

double array sum(int size, const double
nums[]);

(Helps people using your function understand its effects, allows compiler to
enforce that no changes are made.)



CSCI 1320 November 1, 2007

Slide 9

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements
with indices 0 through n− 1. What happens if you reference element -1? n?
2n?

Slide 10

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements
with indices 0 through n− 1. What happens if you reference element -1? n?
2n?

• Well, the compiler won’t complain. At runtime, the computer will happily
compute a memory address based on the starting point of the array and the
index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .



CSCI 1320 November 1, 2007

Slide 11

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of
bounds?)

• “Results are unpredictable.” Maybe it’s outside the memory your program can
access, in which case you probably get the infamous “Segmentation fault”
error message.

Almost worse is if it’s not — then what’s at the computed memory address
might be some other variable in your program, which will then be
accessed/changed. This is the essence of the buffer overflows you hear
mentioned in connection with security problems.

• What to do? Be careful. (Probably worth noting here that some other
languages, Java for example, protect you from such errors.)

Slide 12

Example(s)

• (Next time — instead look at second Homework 5 problem.)



CSCI 1320 November 1, 2007

Slide 13

Minute Essay

• None — sign in.


