CSCI 1320 November 1, 2007

Administrivia

e Reminder: Homework 5 due today. Will be considered on time if sent before
midnight.

o Office hours today — 2pm to 2:50pm, 3:30pm to 5pm. (How many are still
having trouble with the second problem?)

Slide 1 o Next homework to be on Web later today / early tomorrow. Probably due next
Thursday.

e Course next semester (shameless self-promotion?):

— CSCI 3294 (Unix Power Tools) — similar to course two years ago, syllabus
and notes on the Web, linked from my home page under “Old course

materials”.

Minute Essay From Last Lecture

(I asked about what you thought was the biggest limiting factor in your ability
to write code, what you wanted to be able to do. Many thoughtful answers!)

e “Hard to remember everything” — yes, but practice will help. Same thing
applies to being able to decipher error messages.

Slide 2 e Cut/copy/pastein vim — :help visual.txt explains the method
you'll probably like best, and/or the tutorial (vimtutor from the command

line).

e Programs that do something more exciting(?) than simple text input/output —
well, you can't really “get there from here” in standard C. Other programming
languages (e.g., Java) make it easier.

CSCI 1320 November 1, 2007

(Why Arrays?)

® Suppose you wanted to write a program to count how many times each letter
occurs in a text file. What would you do? Is there an obvious way to solve this
with what we’ve discussed so far?

Slide 3
Why Arrays?, Continued
e You could have a variable for how many A’s, one for how many B’s, etc., and a
huge switch construct. But how ugly ...
o What seems to be needed is something similar to subscripted variables in
math — an array.
Slide 4

CSCI 1320 November 1, 2007

Arrays

e Previously we've talked about how to reserve space for a single

number/character and give it a name.

e Arrays extend that by allowing you to reserve space for many
numbers/characters and give a common name to all. You can then reference
Slide 5 an individual element via its index (similar to subscripts in math).

Arrays in C

e Declaring an array — give its type, name, and how many elements.
Examples:
int nums[10];

double stuff[N];

Slide 6 (The second example assumes N is declared and given a value previously. In
old C, it had to be a constant. In newer C, it can be a variable.)

e Referencing an array element — give the array name and an index (ranging
from 0 to array size minus 1). Index can be a constant or a variable. Then use
as you would any other variable. Examples:

nums[0] = 20;
printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

CSCI 1320 November 1, 2007

Arrays in C, Continued

e Declaring that a function parameter is an array — put brackets after
parameter, usually don’t specify array size as part of array parameter.
Example:

double array._sum(int size, double nums[]);

Slide 7 (The newer C99 standard supports a slightly different syntax. More about this
another time.)

e Passing an array to a function — just give its name. Example:

double stuff[100];
printf("%f\n", array_sum(100, stuff));

Arrays in C, Continued

e Using an array parameter within the function — as in previous examples.

o A difference between array parameters and other parameters — array
elements can be changed.

e [f your function isn’t supposed to change the array, declare the parameter

Slide 8 const, e.g.

double array-sum(int size, const double
nums|]);

(Helps people using your function understand its effects, allows compiler to
enforce that no changes are made.)

CSCI 1320 November 1, 2007

Arrays in C, Continued

o We said if you declare an array to be of size 1 you can reference elements
with indices 0 through n — 1. What happens if you reference element -1? n?
2n?

Slide 9
Arrays in C, Continued
e We said if you declare an array to be of size 1 you can reference elements
with indices 0 through n — 1. What happens if you reference element -1? n?
2n?
e Well, the compiler won’t complain. At runtime, the computer will happily
Slide 10 compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it's not (i.e., it's “out of bounds) . ..

CSCI 1320 November 1, 2007

Arrays in C, Continued

e (What happens if you try to access an array with an index that'’s out of
bounds?)

e “Results are unpredictable.” Maybe it's outside the memory your program can
access, in which case you probably get the infamous “Segmentation fault”

Slide 11 error message.

Almost worse is if it's not — then what'’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. This is the essence of the buffer overflows you hear

mentioned in connection with security problems.

o What to do? Be careful. (Probably worth noting here that some other

languages, Java for example, protect you from such errors.)

Example(s)

o (Next time — instead look at second Homework 5 problem.)

Slide 12

CSCI 1320

November 1, 2007

Slide 13

e None — signin.

