
CSCI 1320 November 27, 2007

Slide 1

Administrivia

• Homework 7 (last one) to be on Web later today; due next Tuesday.

Slide 2

Pointers — Review

• Most/many programming languages provide a way to “point to” something in
memory (such as a variable). In C, these are called pointers, and you declare
them by putting a * after the type of the thing pointed to. (Notice that this
means you can have pointers to pointers!)

• You can get the address of a variable with &. You “dereference” a pointer
(access what it points to) with *.

• One important use of pointers is to allow returning more than one thing from a
function, as scanf can.



CSCI 1320 November 27, 2007

Slide 3

Pointers, Arrays, and Pointer Arithmetic in C

• C treats pointers and arrays as interchangeable in most respects. (This is why
it works that many functions whose parameters are supposed to be strings —
arrays of characters — declare them as pointers. fopen is an example.)

• C also permits doing some arithmetic operations on pointers (addition and
subtraction). Adding n to a pointer that points to type advances it n times the
size of type.

Example: If a is an array of ints, a[2] and *(a+2) are equivalent. (This
means we could write loops over arrays using pointers. Once upon a time that
was sometimes more efficient. With current compilers, probably not so, so
use whatever is most readable.)

Slide 4

Dynamic Memory and C

• With the old C standard, you had to decide when you compiled the program
how big to make things, particularly arrays — a signficant limitation.

• Variable-length arrays help with that, but don’t solve all related problems:

In most implementations, space is obtained for them on “the stack”, an area of
memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local
variables (because these local variables cease to exist when you return from
the function).



CSCI 1320 November 27, 2007

Slide 5

Dynamic Memory and C

• “Dynamic allocation” of memory gets around these limitations — allows us to
request memory of whatever size we want (well, up to limitations on total
memory the program can use) and have it stick around until we give it back to
the system.

(The trick here is that most implementations differentiate between two areas
of memory, a “stack” used for local variables, and a “heap” used for dynamic
memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.
(For short simple programs you can not bother with free, but for longer and
more complicated programs, you should clean up when you can, or eventually
you may run out of memory.)

Slide 6

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);
char * some text = malloc(sizeof(char) *
20);
free(nums);

• Book recommends “casting” value returned by malloc. Other references
recommend the opposite! But you should check the value — if NULL, system
was not able to get that much memory.

• (Redo sort/search example using dynamically allocated memory.)



CSCI 1320 November 27, 2007

Slide 7

Text Strings in C, Revisited

• As mentioned briefly last time: C represents text strings as arrays of
characters, with the end of the string indicated by a special “null” character.

• There are many library functions useful for working with strings. But as
practice working with arrays and pointers and dynamic memory, we could
write some of our own . . .

Slide 8

Minute Essay

• None — quiz.


