CSCI 1320 November 29, 2007

Administrivia

e Reminder: Homework 7 due Tuesday.

Slide 1
Text Strings in C, A Little More
e A significant problem in working with strings is that there’s no natural
maximum size, so you have to decide how big to make the array of characters
you will use to hold one — and then be sure you don't try to put in too many
characters.
Slide 2 e Some library functions let you say how big the array is; some don’t. Always be

as careful as you can when working with strings; trying to store a string in an
array not big enough is a source of “buffer overflows”, which can lead to
program crashes and more subtle problems, including security risks.

o Example — revisit the “change case” example, but prompt for filenames.

CSCI 1320 November 29, 2007

Arrays of Text Strings and Command-Line Arguments

e If you can have arrays of int and char and so forth — can you have arrays
of text strings? Sure! They look like two-dimensional arrays of char, or like
arrays of char =*.

e Further, this is how C programs get input “from the command line” (e.g., when

Slide 3 you write gcc myprogram.c, gcc somehow gets myprogram. c,

right?):

main can also be defined as

int main(int argc, char x argv([]) { }
where argc is the number of arguments, plus one, and argv is an array of
strings containing the arguments. Example — let’s write a simple “echo”

program.

One More Topic — User-Defined Types

e So far we've only talked about representing very simple types — numbers,
characters, text strings, arrays, and pointers. You might ask whether there are
ways to represent more complex objects (e.g., a “money” object to represent
dollars and cents — useful since floating-point is inexact for decimal

fractions).
Slide 4

o Most/many programming languages (C included) do let you do that, in various

ways ...

CSCI 1320 November 29, 2007

User-Defined Types in C — typedef

e typedef just provides a way to give a new name to an existing type, e.g.:
typedef charptr char x;
e This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use £1oat or

Slide 5 double in some application) in a single place.

User-Defined Types in C — enum

e In C (and in some other programming languages) an enumeration or an
enumerated type is just a way of specifying a small range of values, e.g.
enum basic_color { red, green, blue, yellow };
enum basic_color color = red;}
Slide 6 This can make code more readable, and sometimes combines nicely with

switch constructs.

e Under the hood, C enumerated types are really just integers, though, and they
can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

CSCI 1320 November 29, 2007

4 User-Defined Types in C — struct)

o More complex (interesting?) types can be defined with struct, which lets
you define a new type as a collection of other types.

e One way to define uses typedef:
typedef struct {
int dollars;
Slide 7 int cents;
} money;

money bank_balance;

e Another way doesn'’t:
struct money {
int dollars;
int cents;
}i

struct money bank_balance;

User-Defined Types in C — struct, Continued

e Either way you define a struct, how you access its fields is the same:
. if what you have is a struct itself:

struct money bank_balance;
bank_balance.dollars = 100;

bank_balance.cents = 100;

Slide 8
—> if what you have is a pointerto a struct:

struct money * bank_balance_ptr = &bank_balance;
bank_balance_ptr->dollars = 100;
bank_balance_ptr->cents = 100;

® (Short example.)

CSCI 1320 November 29, 2007

4)

User-Defined Types in C — union

e For completeness, we should mention that C also provides a way of defining a
structure that can contain one of several alternatives (“this OR that”, as
opposed to the “this AND that” of struct) — union.

e See the discussion in the textbook for more about this; it can be useful, but

Slide 9 can also make code more difficult to understand.

e About the textbook — what did you like? what did you not like?

Slide 10

